##############################################
Running '7878e0b8-94a6-4e9a-b1b4-f3c62fa70786'
##############################################
pending....
running...........................................................................................................................................
completed
Training of '7878e0b8-94a6-4e9a-b1b4-f3c62fa70786' finished successfully.
{'entity': {'hardware_spec': {'id': 'a6c4923b-b8e4-444c-9f43-8a7ec3020110',
'name': 'L'},
'input_data_references': [{'location': {'href': '/v2/assets/fb05d631-8c5e-4641-bc72-6633ba06cbe2?project_id=19a157bf-5c1c-4773-812a-520d8068d84a',
'id': 'fb05d631-8c5e-4641-bc72-6633ba06cbe2'},
'type': 'data_asset'}],
'parameters': {'constraints': {'generation': {'foundation_models': [{'context_template_text': 'My document {document}',
'deployment_id': '30702554-42cc-43e8-82a5-5dc7826d719d',
'parameters': {'max_sequence_length': 32000},
'project_id': '19a157bf-5c1c-4773-812a-520d8068d84a',
'prompt_template_text': 'Answer my question {question} related to these documents {reference_documents}.'}]},
'max_number_of_rag_patterns': 4},
'optimization': {'metrics': ['faithfulness']},
'output_logs': True},
'results': [{'context': {'iteration': 0,
'max_combinations': 40,
'rag_pattern': {'composition_steps': ['model_selection',
'chunking',
'embeddings',
'retrieval',
'generation'],
'duration_seconds': 193,
'location': {'evaluation_results': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/Pattern1/evaluation_results.json',
'indexing_notebook': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/Pattern1/indexing_inference_notebook.ipynb',
'inference_notebook': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/Pattern1/indexing_inference_notebook.ipynb',
'inference_service_code': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/Pattern1/inference_ai_service.gz',
'inference_service_metadata': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/Pattern1/inference_service_metadata.json'},
'name': 'Pattern1',
'settings': {'chunking': {'chunk_overlap': 128,
'chunk_size': 512,
'method': 'recursive'},
'embeddings': {'model_id': 'ibm/slate-125m-english-rtrvr',
'truncate_input_tokens': 512,
'truncate_strategy': 'left'},
'generation': {'context_template_text': 'My document {document}',
'deployment_id': '30702554-42cc-43e8-82a5-5dc7826d719d',
'parameters': {'decoding_method': 'greedy',
'max_new_tokens': 1000,
'max_sequence_length': 32000,
'min_new_tokens': 1},
'prompt_template_text': 'Answer my question {question} related to these documents {reference_documents}.',
'word_to_token_ratio': 2.0},
'retrieval': {'method': 'simple', 'number_of_chunks': 3},
'vector_store': {'datasource_type': 'chroma',
'distance_metric': 'cosine',
'index_name': 'autoai_rag_7878e0b8_20250627145642',
'operation': 'upsert',
'schema': {'fields': [{'description': 'text field',
'name': 'text',
'role': 'text',
'type': 'string'},
{'description': 'document name field',
'name': 'document_id',
'role': 'document_name',
'type': 'string'},
{'description': 'chunk starting token position in the source document',
'name': 'start_index',
'role': 'start_index',
'type': 'number'},
{'description': 'chunk number per document',
'name': 'sequence_number',
'role': 'sequence_number',
'type': 'number'},
{'description': 'vector embeddings',
'name': 'vector',
'role': 'vector_embeddings',
'type': 'array'}],
'id': 'autoai_rag_1.0',
'name': 'Document schema using open-source loaders',
'type': 'struct'}}},
'settings_importance': {'chunking': [{'importance': 0.125,
'parameter': 'chunk_size'},
{'importance': 0.125, 'parameter': 'chunk_overlap'}],
'embeddings': [{'importance': 0.125, 'parameter': 'embedding_model'}],
'generation': [{'importance': 0.125, 'parameter': 'foundation_model'}],
'retrieval': [{'importance': 0.125, 'parameter': 'retrieval_method'},
{'importance': 0.125, 'parameter': 'window_size'},
{'importance': 0.125, 'parameter': 'number_of_chunks'}]}},
'software_spec': {}},
'metrics': {'test_data': [{'ci_high': 0.7937,
'ci_low': 0.0,
'mean': 0.5079,
'metric_name': 'answer_correctness'},
{'ci_high': 0.1414,
'ci_low': 0.0,
'mean': 0.072,
'metric_name': 'faithfulness'},
{'mean': 1.0, 'metric_name': 'context_correctness'}]}},
{'context': {'iteration': 1,
'max_combinations': 40,
'rag_pattern': {'composition_steps': ['model_selection',
'chunking',
'embeddings',
'retrieval',
'generation'],
'duration_seconds': 266,
'location': {'evaluation_results': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/Pattern2/evaluation_results.json',
'indexing_notebook': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/Pattern2/indexing_inference_notebook.ipynb',
'inference_notebook': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/Pattern2/indexing_inference_notebook.ipynb',
'inference_service_code': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/Pattern2/inference_ai_service.gz',
'inference_service_metadata': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/Pattern2/inference_service_metadata.json'},
'name': 'Pattern2',
'settings': {'chunking': {'chunk_overlap': 256,
'chunk_size': 512,
'method': 'recursive'},
'embeddings': {'model_id': 'ibm/slate-125m-english-rtrvr',
'truncate_input_tokens': 512,
'truncate_strategy': 'left'},
'generation': {'context_template_text': 'My document {document}',
'deployment_id': '30702554-42cc-43e8-82a5-5dc7826d719d',
'parameters': {'decoding_method': 'greedy',
'max_new_tokens': 1000,
'max_sequence_length': 32000,
'min_new_tokens': 1},
'prompt_template_text': 'Answer my question {question} related to these documents {reference_documents}.',
'word_to_token_ratio': 2.0},
'retrieval': {'method': 'window',
'number_of_chunks': 3,
'window_size': 1},
'vector_store': {'datasource_type': 'chroma',
'distance_metric': 'cosine',
'index_name': 'autoai_rag_7878e0b8_20250627150244',
'operation': 'upsert',
'schema': {'fields': [{'description': 'text field',
'name': 'text',
'role': 'text',
'type': 'string'},
{'description': 'document name field',
'name': 'document_id',
'role': 'document_name',
'type': 'string'},
{'description': 'chunk starting token position in the source document',
'name': 'start_index',
'role': 'start_index',
'type': 'number'},
{'description': 'chunk number per document',
'name': 'sequence_number',
'role': 'sequence_number',
'type': 'number'},
{'description': 'vector embeddings',
'name': 'vector',
'role': 'vector_embeddings',
'type': 'array'}],
'id': 'autoai_rag_1.0',
'name': 'Document schema using open-source loaders',
'type': 'struct'}}},
'settings_importance': {'chunking': [{'importance': 0.0,
'parameter': 'chunk_size'},
{'importance': 0.0, 'parameter': 'chunk_overlap'}],
'embeddings': [{'importance': 0.0, 'parameter': 'embedding_model'}],
'generation': [{'importance': 0.0, 'parameter': 'foundation_model'}],
'retrieval': [{'importance': 1.0, 'parameter': 'retrieval_method'},
{'importance': 0.0, 'parameter': 'window_size'},
{'importance': 0.0, 'parameter': 'number_of_chunks'}]}},
'software_spec': {}},
'metrics': {'test_data': [{'ci_high': 1.0,
'ci_low': 0.0,
'mean': 0.4815,
'metric_name': 'answer_correctness'},
{'ci_high': 0.3475,
'ci_low': 0.0,
'mean': 0.2144,
'metric_name': 'faithfulness'},
{'mean': 1.0, 'metric_name': 'context_correctness'}]}},
{'context': {'iteration': 2,
'max_combinations': 40,
'rag_pattern': {'composition_steps': ['model_selection',
'chunking',
'embeddings',
'retrieval',
'generation'],
'duration_seconds': 180,
'location': {'evaluation_results': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/Pattern3/evaluation_results.json',
'indexing_notebook': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/Pattern3/indexing_inference_notebook.ipynb',
'inference_notebook': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/Pattern3/indexing_inference_notebook.ipynb',
'inference_service_code': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/Pattern3/inference_ai_service.gz',
'inference_service_metadata': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/Pattern3/inference_service_metadata.json'},
'name': 'Pattern3',
'settings': {'chunking': {'chunk_overlap': 256,
'chunk_size': 1024,
'method': 'recursive'},
'embeddings': {'model_id': 'ibm/slate-125m-english-rtrvr',
'truncate_input_tokens': 512,
'truncate_strategy': 'left'},
'generation': {'context_template_text': 'My document {document}',
'deployment_id': '30702554-42cc-43e8-82a5-5dc7826d719d',
'parameters': {'decoding_method': 'greedy',
'max_new_tokens': 1000,
'max_sequence_length': 32000,
'min_new_tokens': 1},
'prompt_template_text': 'Answer my question {question} related to these documents {reference_documents}.',
'word_to_token_ratio': 2.0},
'retrieval': {'method': 'simple', 'number_of_chunks': 5},
'vector_store': {'datasource_type': 'chroma',
'distance_metric': 'cosine',
'index_name': 'autoai_rag_7878e0b8_20250627150710',
'operation': 'upsert',
'schema': {'fields': [{'description': 'text field',
'name': 'text',
'role': 'text',
'type': 'string'},
{'description': 'document name field',
'name': 'document_id',
'role': 'document_name',
'type': 'string'},
{'description': 'chunk starting token position in the source document',
'name': 'start_index',
'role': 'start_index',
'type': 'number'},
{'description': 'chunk number per document',
'name': 'sequence_number',
'role': 'sequence_number',
'type': 'number'},
{'description': 'vector embeddings',
'name': 'vector',
'role': 'vector_embeddings',
'type': 'array'}],
'id': 'autoai_rag_1.0',
'name': 'Document schema using open-source loaders',
'type': 'struct'}}},
'settings_importance': {'chunking': [{'importance': 0.18471761,
'parameter': 'chunk_size'},
{'importance': 0.2972388, 'parameter': 'chunk_overlap'}],
'embeddings': [{'importance': 0.0, 'parameter': 'embedding_model'}],
'generation': [{'importance': 0.0, 'parameter': 'foundation_model'}],
'retrieval': [{'importance': 0.35138428,
'parameter': 'retrieval_method'},
{'importance': 0.061107427, 'parameter': 'window_size'},
{'importance': 0.10555187, 'parameter': 'number_of_chunks'}]}},
'software_spec': {}},
'metrics': {'test_data': [{'ci_high': 0.4545,
'ci_low': 0.0,
'mean': 0.2256,
'metric_name': 'answer_correctness'},
{'ci_high': 0.3934,
'ci_low': 0.0323,
'mean': 0.1634,
'metric_name': 'faithfulness'},
{'mean': 1.0, 'metric_name': 'context_correctness'}]}}],
'results_reference': {'location': {'path': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results',
'training': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786',
'training_status': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/training-status.json',
'training_log': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/output.log',
'assets_path': '/projects/19a157bf-5c1c-4773-812a-520d8068d84a/assets/autorag/results/7878e0b8-94a6-4e9a-b1b4-f3c62fa70786/assets'},
'type': 'fs'},
'status': {'completed_at': '2025-06-27T15:10:12.169Z',
'message': {'level': 'warning',
'text': 'AAR021W: Warnings:\n AR1128W: Unable to retrieve chunks and generate answers for deployment with ID: 30702554-42cc-43e8-82a5-5dc7826d719d.'},
'running_at': '2025-06-27T14:56:38.000Z',
'state': 'completed',
'step': 'generation'},
'test_data_references': [{'location': {'href': '/v2/assets/fc14fca8-93c4-4b5e-a72f-d19fcc0aeaf4?project_id=19a157bf-5c1c-4773-812a-520d8068d84a',
'id': 'fc14fca8-93c4-4b5e-a72f-d19fcc0aeaf4'},
'type': 'data_asset'}],
'timestamp': '2025-06-27T15:10:17.754Z'},
'metadata': {'created_at': '2025-06-27T14:56:03.343Z',
'description': 'AutoAI RAG experiment with custom foundation model.',
'id': '7878e0b8-94a6-4e9a-b1b4-f3c62fa70786',
'modified_at': '2025-06-27T15:10:12.177Z',
'name': 'AutoAI RAG - Custom foundation model experiment',
'project_id': '19a157bf-5c1c-4773-812a-520d8068d84a'}}