Kernel: Python 3
数据可视化详解
In [1]:
In [2]:
matplotlib
整体架构:
渲染层 - 底层的画布,图像的渲染,事件交互
组件层 - 各种各样的统计图表
脚本层 - 提供编程接口,通过调函数实现图表绘制
绘图过程:
创建画布 - plt.figure(figsize, dpi) --> Figure
创建坐标系 - plt.subplot(nrows, ncols, index)
绘制图表
折线图:plt.plot()
散点图:plt.scatter()
柱状图:plt.bar() / plt.barh()
饼图:plt.pie()
直方图:plt.hist()
箱线图:plt.boxplot()
保存图表 - plt.savefig()
显示图表 - plt.show()
In [3]:
In [4]:
In [5]:
In [6]:
Out[6]:
In [7]:
In [8]:
Out[8]:
In [9]:
In [10]:
Out[10]:
In [11]:
Out[11]:
In [12]:
Out[12]:
array([ 5550., 7500., 10500., 15000., 20000., 25000., 30000., 40000.])
In [13]:
Out[13]:
array([ 800., 1800., 1250., 2000., 1800., 2100., 2500., 3500.])
In [14]:
Out[14]:
In [15]:
Out[15]:
array([ 5, 3, 10, 5, 12, 20, 8, 10])
In [16]:
Out[16]:
In [17]:
Out[17]:
<matplotlib.colorbar.Colorbar at 0x12249af40>
In [18]:
In [19]:
In [20]:
Out[20]:
In [21]:
Out[21]:
In [22]:
Out[22]:
In [23]:
Out[23]:
In [24]:
Out[24]:
In [25]:
In [26]:
Out[26]:
In [27]:
In [28]:
Out[28]:
In [29]:
Out[29]:
In [30]:
Out[30]:
1000
In [31]:
Out[31]:
In [32]:
Out[32]:
In [33]:
Out[33]:
In [34]:
Out[34]:
In [35]:
Out[35]:
In [36]:
In [37]:
Out[37]:
In [38]:
seaborn
对matplotlib进行了封装,定制了默认的样式,简化了调用matplotlib函数时需要传入的参数。
In [39]:
In [40]:
In [41]:
In [42]:
In [43]:
Out[43]:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 total_bill 244 non-null float64
1 tip 244 non-null float64
2 sex 244 non-null object
3 smoker 244 non-null object
4 day 244 non-null object
5 time 244 non-null object
6 size 244 non-null int64
dtypes: float64(2), int64(1), object(4)
memory usage: 13.5+ KB
In [44]:
Out[44]:
In [45]:
Out[45]:
<Axes: xlabel='total_bill', ylabel='Count'>
In [46]:
Out[46]:
<Axes: xlabel='total_bill', ylabel='Density'>
In [47]:
In [48]:
In [49]:
In [50]:
In [51]:
Out[51]:
In [52]:
Out[52]:
<seaborn.axisgrid.PairGrid at 0x12fc258b0>
In [53]:
Out[53]:
In [54]:
Out[54]:
<seaborn.axisgrid.PairGrid at 0x1480d1040>
In [55]:
Out[55]:
<seaborn.axisgrid.JointGrid at 0x1480acac0>
In [56]:
Out[56]:
<seaborn.axisgrid.JointGrid at 0x1486bf640>
In [57]:
Out[57]:
<seaborn.axisgrid.JointGrid at 0x14882fb80>
In [58]:
Out[58]:
<seaborn.axisgrid.FacetGrid at 0x1488219d0>
In [59]:
Out[59]:
<Axes: xlabel='day', ylabel='total_bill'>
In [60]:
Out[60]:
<Axes: xlabel='day', ylabel='total_bill'>
pyecharts
对Apache的echarts库用Python语言进行了封装,可以绘制美观且交互性极佳的统计图表。
In [61]:
In [62]:
In [63]:
Out[63]:
<pyecharts.render.display.Javascript at 0x148fe5eb0>
In [64]:
Out[64]:
In [65]:
Out[65]:
<pyecharts.render.display.Javascript at 0x148f97ac0>
In [66]:
Out[66]:
In [67]:
Out[67]:
<pyecharts.render.display.Javascript at 0x148fe5250>
In [68]:
Out[68]:
In [69]:
Out[69]:
<pyecharts.render.display.Javascript at 0x149806760>
In [70]:
Out[70]:
In [71]:
Out[71]:
In [72]:
Out[72]:
<pyecharts.render.display.Javascript at 0x1498e94f0>
In [73]:
Out[73]:
In [74]:
In [75]:
Out[75]:
<pyecharts.render.display.Javascript at 0x149809c70>
In [76]:
Out[76]: