Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
jantic
GitHub Repository: jantic/deoldify
Path: blob/master/fastai/vision/models/xresnet2.py
781 views
1
import torch.nn as nn
2
import torch
3
import math
4
import torch.utils.model_zoo as model_zoo
5
from ...torch_core import Module
6
7
8
__all__ = ['XResNet', 'xresnet18', 'xresnet34_2', 'xresnet50_2', 'xresnet101', 'xresnet152']
9
10
11
def conv3x3(in_planes, out_planes, stride=1):
12
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
13
14
15
class BasicBlock(Module):
16
expansion = 1
17
18
def __init__(self, inplanes, planes, stride=1, downsample=None):
19
super(BasicBlock, self).__init__()
20
self.conv1 = conv3x3(inplanes, planes, stride)
21
self.bn1 = nn.BatchNorm2d(planes)
22
self.relu = nn.ReLU(inplace=True)
23
self.conv2 = conv3x3(planes, planes)
24
self.bn2 = nn.BatchNorm2d(planes)
25
self.downsample = downsample
26
self.stride = stride
27
28
def forward(self, x):
29
residual = x
30
31
out = self.conv1(x)
32
out = self.bn1(out)
33
out = self.relu(out)
34
35
out = self.conv2(out)
36
out = self.bn2(out)
37
38
if self.downsample is not None: residual = self.downsample(x)
39
40
out += residual
41
out = self.relu(out)
42
43
return out
44
45
46
class Bottleneck(Module):
47
expansion = 4
48
49
def __init__(self, inplanes, planes, stride=1, downsample=None):
50
super(Bottleneck, self).__init__()
51
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
52
self.bn1 = nn.BatchNorm2d(planes)
53
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
54
padding=1, bias=False)
55
self.bn2 = nn.BatchNorm2d(planes)
56
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
57
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
58
self.relu = nn.ReLU(inplace=True)
59
self.downsample = downsample
60
self.stride = stride
61
62
def forward(self, x):
63
residual = x
64
65
out = self.conv1(x)
66
out = self.bn1(out)
67
out = self.relu(out)
68
69
out = self.conv2(out)
70
out = self.bn2(out)
71
out = self.relu(out)
72
73
out = self.conv3(out)
74
out = self.bn3(out)
75
76
if self.downsample is not None: residual = self.downsample(x)
77
78
out += residual
79
out = self.relu(out)
80
81
return out
82
83
def conv2d(ni, nf, stride):
84
return nn.Sequential(nn.Conv2d(ni, nf, kernel_size=3, stride=stride, padding=1, bias=False),
85
nn.BatchNorm2d(nf), nn.ReLU(inplace=True))
86
87
class XResNet(Module):
88
89
def __init__(self, block, layers, c_out=1000):
90
self.inplanes = 64
91
super(XResNet, self).__init__()
92
self.conv1 = conv2d(3, 32, 2)
93
self.conv2 = conv2d(32, 32, 1)
94
self.conv3 = conv2d(32, 64, 1)
95
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
96
self.layer1 = self._make_layer(block, 64, layers[0])
97
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
98
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
99
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
100
self.avgpool = nn.AdaptiveAvgPool2d(1)
101
self.fc = nn.Linear(512 * block.expansion, c_out)
102
103
for m in self.modules():
104
if isinstance(m, nn.Conv2d):
105
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
106
elif isinstance(m, nn.BatchNorm2d):
107
nn.init.constant_(m.weight, 1)
108
nn.init.constant_(m.bias, 0)
109
110
for m in self.modules():
111
if isinstance(m, BasicBlock): m.bn2.weight = nn.Parameter(torch.zeros_like(m.bn2.weight))
112
if isinstance(m, Bottleneck): m.bn3.weight = nn.Parameter(torch.zeros_like(m.bn3.weight))
113
if isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.01)
114
115
def _make_layer(self, block, planes, blocks, stride=1):
116
downsample = None
117
if stride != 1 or self.inplanes != planes * block.expansion:
118
layers = []
119
if stride==2: layers.append(nn.AvgPool2d(kernel_size=2, stride=2))
120
layers += [
121
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=1, bias=False),
122
nn.BatchNorm2d(planes * block.expansion) ]
123
downsample = nn.Sequential(*layers)
124
125
layers = []
126
layers.append(block(self.inplanes, planes, stride, downsample))
127
self.inplanes = planes * block.expansion
128
for i in range(1, blocks): layers.append(block(self.inplanes, planes))
129
return nn.Sequential(*layers)
130
131
def forward(self, x):
132
x = self.conv1(x)
133
x = self.conv2(x)
134
x = self.conv3(x)
135
x = self.maxpool(x)
136
137
x = self.layer1(x)
138
x = self.layer2(x)
139
x = self.layer3(x)
140
x = self.layer4(x)
141
142
x = self.avgpool(x)
143
x = x.view(x.size(0), -1)
144
x = self.fc(x)
145
146
return x
147
148
149
def xresnet18(pretrained=False, **kwargs):
150
"""Constructs a XResNet-18 model.
151
152
Args:
153
pretrained (bool): If True, returns a model pre-trained on ImageNet
154
"""
155
model = XResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
156
if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['xresnet18']))
157
return model
158
159
160
def xresnet34_2(pretrained=False, **kwargs):
161
"""Constructs a XResNet-34 model.
162
163
Args:
164
pretrained (bool): If True, returns a model pre-trained on ImageNet
165
"""
166
model = XResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
167
if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['xresnet34']))
168
return model
169
170
171
def xresnet50_2(pretrained=False, **kwargs):
172
"""Constructs a XResNet-50 model.
173
174
Args:
175
pretrained (bool): If True, returns a model pre-trained on ImageNet
176
"""
177
model = XResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
178
if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['xresnet50']))
179
return model
180
181
182
def xresnet101(pretrained=False, **kwargs):
183
"""Constructs a XResNet-101 model.
184
185
Args:
186
pretrained (bool): If True, returns a model pre-trained on ImageNet
187
"""
188
model = XResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
189
if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['xresnet101']))
190
return model
191
192
193
def xresnet152(pretrained=False, **kwargs):
194
"""Constructs a XResNet-152 model.
195
196
Args:
197
pretrained (bool): If True, returns a model pre-trained on ImageNet
198
"""
199
model = XResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
200
if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['xresnet152']))
201
return model
202
203
204