"Image transformations for data augmentation. All transforms are done on the tensor level"
from ..torch_core import *
from .image import *
from .image import _affine_mult
__all__ = ['brightness', 'contrast', 'crop', 'crop_pad', 'cutout', 'dihedral', 'dihedral_affine', 'flip_affine', 'flip_lr',
'get_transforms', 'jitter', 'pad', 'perspective_warp', 'rand_pad', 'rand_crop', 'rand_zoom', 'rgb_randomize', 'rotate', 'skew', 'squish',
'rand_resize_crop', 'symmetric_warp', 'tilt', 'zoom', 'zoom_crop']
_pad_mode_convert = {'reflection':'reflect', 'zeros':'constant', 'border':'replicate'}
def _brightness(x, change:uniform):
"Apply `change` in brightness of image `x`."
return x.add_(scipy.special.logit(change))
brightness = TfmLighting(_brightness)
def _contrast(x, scale:log_uniform):
"Apply `scale` to contrast of image `x`."
return x.mul_(scale)
contrast = TfmLighting(_contrast)
def _rotate(degrees:uniform):
"Rotate image by `degrees`."
angle = degrees * math.pi / 180
return [[float(cos(angle)), float(-sin(angle)), 0.],
[float(sin(angle)), float(cos(angle)), 0.],
[0. , 0. , 1.]]
rotate = TfmAffine(_rotate)
def _get_zoom_mat(sw:float, sh:float, c:float, r:float)->AffineMatrix:
"`sw`,`sh` scale width,height - `c`,`r` focus col,row."
return [[sw, 0, c],
[0, sh, r],
[0, 0, 1.]]
def _zoom(scale:uniform=1.0, row_pct:uniform=0.5, col_pct:uniform=0.5):
"Zoom image by `scale`. `row_pct`,`col_pct` select focal point of zoom."
s = 1-1/scale
col_c = s * (2*col_pct - 1)
row_c = s * (2*row_pct - 1)
return _get_zoom_mat(1/scale, 1/scale, col_c, row_c)
zoom = TfmAffine(_zoom)
def _squish(scale:uniform=1.0, row_pct:uniform=0.5, col_pct:uniform=0.5):
"Squish image by `scale`. `row_pct`,`col_pct` select focal point of zoom."
if scale <= 1:
col_c = (1-scale) * (2*col_pct - 1)
return _get_zoom_mat(scale, 1, col_c, 0.)
else:
row_c = (1-1/scale) * (2*row_pct - 1)
return _get_zoom_mat(1, 1/scale, 0., row_c)
squish = TfmAffine(_squish)
def _jitter(c, magnitude:uniform):
"Replace pixels by random neighbors at `magnitude`."
c.flow.add_((torch.rand_like(c.flow)-0.5)*magnitude*2)
return c
jitter = TfmCoord(_jitter)
def _flip_lr(x):
"Flip `x` horizontally."
if isinstance(x, ImagePoints):
x.flow.flow[...,0] *= -1
return x
return tensor(np.ascontiguousarray(np.array(x)[...,::-1]))
flip_lr = TfmPixel(_flip_lr)
def _flip_affine() -> TfmAffine:
"Flip `x` horizontally."
return [[-1, 0, 0.],
[0, 1, 0],
[0, 0, 1.]]
flip_affine = TfmAffine(_flip_affine)
def _dihedral(x, k:partial(uniform_int,0,7)):
"Randomly flip `x` image based on `k`."
flips=[]
if k&1: flips.append(1)
if k&2: flips.append(2)
if flips: x = torch.flip(x,flips)
if k&4: x = x.transpose(1,2)
return x.contiguous()
dihedral = TfmPixel(_dihedral)
def _dihedral_affine(k:partial(uniform_int,0,7)):
"Randomly flip `x` image based on `k`."
x = -1 if k&1 else 1
y = -1 if k&2 else 1
if k&4: return [[0, x, 0.],
[y, 0, 0],
[0, 0, 1.]]
return [[x, 0, 0.],
[0, y, 0],
[0, 0, 1.]]
dihedral_affine = TfmAffine(_dihedral_affine)
def _pad_coord(x, row_pad:int, col_pad:int, mode='zeros'):
h,w = x.size
pad = torch.Tensor([w/(w + 2*col_pad), h/(h + 2*row_pad)])
x.flow = FlowField((h+2*row_pad, w+2*col_pad) , x.flow.flow * pad[None])
return x
def _pad_default(x, padding:int, mode='reflection'):
"Pad `x` with `padding` pixels. `mode` fills in space ('zeros','reflection','border')."
mode = _pad_mode_convert[mode]
return F.pad(x[None], (padding,)*4, mode=mode)[0]
def _pad_image_points(x, padding:int, mode='reflection'):
return _pad_coord(x, padding, padding, mode)
def _pad(x, padding:int, mode='reflection'):
f_pad = _pad_image_points if isinstance(x, ImagePoints) else _pad_default
return f_pad(x, padding, mode)
pad = TfmPixel(_pad, order=-10)
def _cutout(x, n_holes:uniform_int=1, length:uniform_int=40):
"Cut out `n_holes` number of square holes of size `length` in image at random locations."
h,w = x.shape[1:]
for n in range(n_holes):
h_y = np.random.randint(0, h)
h_x = np.random.randint(0, w)
y1 = int(np.clip(h_y - length / 2, 0, h))
y2 = int(np.clip(h_y + length / 2, 0, h))
x1 = int(np.clip(h_x - length / 2, 0, w))
x2 = int(np.clip(h_x + length / 2, 0, w))
x[:, y1:y2, x1:x2] = 0
return x
cutout = TfmPixel(_cutout, order=20)
def _rgb_randomize(x, channel:int=None, thresh:float=0.3):
"Randomize one of the channels of the input image"
if channel is None: channel = np.random.randint(0, x.shape[0] - 1)
x[channel] = torch.rand(x.shape[1:]) * np.random.uniform(0, thresh)
return x
rgb_randomize = TfmPixel(_rgb_randomize)
def _minus_epsilon(row_pct:float, col_pct:float, eps:float=1e-7):
if row_pct==1.: row_pct -= 1e-7
if col_pct==1.: col_pct -= 1e-7
return row_pct,col_pct
def _crop_default(x, size, row_pct:uniform=0.5, col_pct:uniform=0.5):
"Crop `x` to `size` pixels. `row_pct`,`col_pct` select focal point of crop."
rows,cols = tis2hw(size)
row_pct,col_pct = _minus_epsilon(row_pct,col_pct)
row = int((x.size(1)-rows+1) * row_pct)
col = int((x.size(2)-cols+1) * col_pct)
return x[:, row:row+rows, col:col+cols].contiguous()
def _crop_image_points(x, size, row_pct=0.5, col_pct=0.5):
h,w = x.size
rows,cols = tis2hw(size)
row_pct,col_pct = _minus_epsilon(row_pct,col_pct)
x.flow.flow.mul_(torch.Tensor([w/cols, h/rows])[None])
row = int((h-rows+1) * row_pct)
col = int((w-cols+1) * col_pct)
x.flow.flow.add_(-1 + torch.Tensor([w/cols-2*col/cols, h/rows-2*row/rows])[None])
x.size = (rows, cols)
return x
def _crop(x, size, row_pct:uniform=0.5, col_pct:uniform=0.5):
f_crop = _crop_image_points if isinstance(x, ImagePoints) else _crop_default
return f_crop(x, size, row_pct, col_pct)
crop = TfmPixel(_crop)
def _crop_pad_default(x, size, padding_mode='reflection', row_pct:uniform = 0.5, col_pct:uniform = 0.5):
"Crop and pad tfm - `row_pct`,`col_pct` sets focal point."
padding_mode = _pad_mode_convert[padding_mode]
size = tis2hw(size)
if x.shape[1:] == torch.Size(size): return x
rows,cols = size
row_pct,col_pct = _minus_epsilon(row_pct,col_pct)
if x.size(1)<rows or x.size(2)<cols:
row_pad = max((rows-x.size(1)+1)//2, 0)
col_pad = max((cols-x.size(2)+1)//2, 0)
x = F.pad(x[None], (col_pad,col_pad,row_pad,row_pad), mode=padding_mode)[0]
row = int((x.size(1)-rows+1)*row_pct)
col = int((x.size(2)-cols+1)*col_pct)
x = x[:, row:row+rows, col:col+cols]
return x.contiguous()
def _crop_pad_image_points(x, size, padding_mode='reflection', row_pct = 0.5, col_pct = 0.5):
size = tis2hw(size)
rows,cols = size
if x.size[0]<rows or x.size[1]<cols:
row_pad = max((rows-x.size[0]+1)//2, 0)
col_pad = max((cols-x.size[1]+1)//2, 0)
x = _pad_coord(x, row_pad, col_pad)
return crop(x,(rows,cols), row_pct, col_pct)
def _crop_pad(x, size, padding_mode='reflection', row_pct:uniform = 0.5, col_pct:uniform = 0.5):
f_crop_pad = _crop_pad_image_points if isinstance(x, ImagePoints) else _crop_pad_default
return f_crop_pad(x, size, padding_mode, row_pct, col_pct)
crop_pad = TfmCrop(_crop_pad)
def _image_maybe_add_crop_pad(img, tfms):
tfm_names = [tfm.__name__ for tfm in tfms]
return [crop_pad()] + tfms if 'crop_pad' not in tfm_names else tfms
Image._maybe_add_crop_pad = _image_maybe_add_crop_pad
rand_pos = {'row_pct':(0,1), 'col_pct':(0,1)}
def rand_pad(padding:int, size:int, mode:str='reflection'):
"Fixed `mode` `padding` and random crop of `size`"
return [pad(padding=padding,mode=mode),
crop(size=size, **rand_pos)]
def rand_zoom(scale:uniform=1.0, p:float=1.):
"Randomized version of `zoom`."
return zoom(scale=scale, **rand_pos, p=p)
def rand_crop(*args, padding_mode='reflection', p:float=1.):
"Randomized version of `crop_pad`."
return crop_pad(*args, **rand_pos, padding_mode=padding_mode, p=p)
def zoom_crop(scale:float, do_rand:bool=False, p:float=1.0):
"Randomly zoom and/or crop."
zoom_fn = rand_zoom if do_rand else zoom
crop_fn = rand_crop if do_rand else crop_pad
return [zoom_fn(scale=scale, p=p), crop_fn()]
def _find_coeffs(orig_pts:Points, targ_pts:Points)->Tensor:
"Find 8 coeff mentioned [here](https://web.archive.org/web/20150222120106/xenia.media.mit.edu/~cwren/interpolator/)."
matrix = []
for p1, p2 in zip(targ_pts, orig_pts):
matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0]*p1[0], -p2[0]*p1[1]])
matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1]*p1[0], -p2[1]*p1[1]])
A = FloatTensor(matrix)
B = FloatTensor(orig_pts).view(8, 1)
return torch.linalg.solve(A,B)[:,0]
def _apply_perspective(coords:FlowField, coeffs:Points)->FlowField:
"Transform `coords` with `coeffs`."
size = coords.flow.size()
coords.flow = coords.flow.view(-1,2)
coeffs = torch.cat([coeffs, FloatTensor([1])]).view(3,3)
coords.flow = torch.addmm(coeffs[:,2], coords.flow, coeffs[:,:2].t())
coords.flow.mul_(1/coords.flow[:,2].unsqueeze(1))
coords.flow = coords.flow[:,:2].view(size)
return coords
_orig_pts = [[-1,-1], [-1,1], [1,-1], [1,1]]
def _do_perspective_warp(c:FlowField, targ_pts:Points, invert=False):
"Apply warp to `targ_pts` from `_orig_pts` to `c` `FlowField`."
if invert: return _apply_perspective(c, _find_coeffs(targ_pts, _orig_pts))
return _apply_perspective(c, _find_coeffs(_orig_pts, targ_pts))
def _perspective_warp(c, magnitude:partial(uniform,size=8)=0, invert=False):
"Apply warp of `magnitude` to `c`."
magnitude = magnitude.view(4,2)
targ_pts = [[x+m for x,m in zip(xs, ms)] for xs, ms in zip(_orig_pts, magnitude)]
return _do_perspective_warp(c, targ_pts, invert)
perspective_warp = TfmCoord(_perspective_warp)
def _symmetric_warp(c, magnitude:partial(uniform,size=4)=0, invert=False):
"Apply symmetric warp of `magnitude` to `c`."
m = listify(magnitude, 4)
targ_pts = [[-1-m[3],-1-m[1]], [-1-m[2],1+m[1]], [1+m[3],-1-m[0]], [1+m[2],1+m[0]]]
return _do_perspective_warp(c, targ_pts, invert)
symmetric_warp = TfmCoord(_symmetric_warp)
def _tilt(c, direction:uniform_int, magnitude:uniform=0, invert=False):
"Tilt `c` field with random `direction` and `magnitude`."
orig_pts = [[-1,-1], [-1,1], [1,-1], [1,1]]
if direction == 0: targ_pts = [[-1,-1], [-1,1], [1,-1-magnitude], [1,1+magnitude]]
elif direction == 1: targ_pts = [[-1,-1-magnitude], [-1,1+magnitude], [1,-1], [1,1]]
elif direction == 2: targ_pts = [[-1,-1], [-1-magnitude,1], [1,-1], [1+magnitude,1]]
elif direction == 3: targ_pts = [[-1-magnitude,-1], [-1,1], [1+magnitude,-1], [1,1]]
coeffs = _find_coeffs(targ_pts, _orig_pts) if invert else _find_coeffs(_orig_pts, targ_pts)
return _apply_perspective(c, coeffs)
tilt = TfmCoord(_tilt)
def _skew(c, direction:uniform_int, magnitude:uniform=0, invert=False):
"Skew `c` field with random `direction` and `magnitude`."
orig_pts = [[-1,-1], [-1,1], [1,-1], [1,1]]
if direction == 0: targ_pts = [[-1-magnitude,-1], [-1,1], [1,-1], [1,1]]
elif direction == 1: targ_pts = [[-1,-1-magnitude], [-1,1], [1,-1], [1,1]]
elif direction == 2: targ_pts = [[-1,-1], [-1-magnitude,1], [1,-1], [1,1]]
elif direction == 3: targ_pts = [[-1,-1], [-1,1+magnitude], [1,-1], [1,1]]
elif direction == 4: targ_pts = [[-1,-1], [-1,1], [1+magnitude,-1], [1,1]]
elif direction == 5: targ_pts = [[-1,-1], [-1,1], [1,-1-magnitude], [1,1]]
elif direction == 6: targ_pts = [[-1,-1], [-1,1], [1,-1], [1+magnitude,1]]
elif direction == 7: targ_pts = [[-1,-1], [-1,1], [1,-1], [1,1+magnitude]]
coeffs = _find_coeffs(targ_pts, _orig_pts) if invert else _find_coeffs(_orig_pts, targ_pts)
return _apply_perspective(c, coeffs)
skew = TfmCoord(_skew)
def get_transforms(do_flip:bool=True, flip_vert:bool=False, max_rotate:float=10., max_zoom:float=1.1,
max_lighting:float=0.2, max_warp:float=0.2, p_affine:float=0.75,
p_lighting:float=0.75, xtra_tfms:Optional[Collection[Transform]]=None)->Collection[Transform]:
"Utility func to easily create a list of flip, rotate, `zoom`, warp, lighting transforms."
res = [rand_crop()]
if do_flip: res.append(dihedral_affine() if flip_vert else flip_lr(p=0.5))
if max_warp: res.append(symmetric_warp(magnitude=(-max_warp,max_warp), p=p_affine))
if max_rotate: res.append(rotate(degrees=(-max_rotate,max_rotate), p=p_affine))
if max_zoom>1: res.append(rand_zoom(scale=(1.,max_zoom), p=p_affine))
if max_lighting:
res.append(brightness(change=(0.5*(1-max_lighting), 0.5*(1+max_lighting)), p=p_lighting))
res.append(contrast(scale=(1-max_lighting, 1/(1-max_lighting)), p=p_lighting))
return (res + listify(xtra_tfms), [crop_pad()])
def _compute_zs_mat(sz:TensorImageSize, scale:float, squish:float,
invert:bool, row_pct:float, col_pct:float)->AffineMatrix:
"Utility routine to compute zoom/squish matrix."
orig_ratio = math.sqrt(sz[1]/sz[0])
for s,r,i in zip(scale,squish, invert):
s,r = 1/math.sqrt(s),math.sqrt(r)
if s * r <= 1 and s / r <= 1:
w,h = (s/r, s*r) if i else (s*r,s/r)
col_c = (1-w) * (2*col_pct - 1)
row_c = (1-h) * (2*row_pct - 1)
return _get_zoom_mat(w, h, col_c, row_c)
if orig_ratio > 1: return _get_zoom_mat(1/orig_ratio**2, 1, 0, 0.)
else: return _get_zoom_mat(1, orig_ratio**2, 0, 0.)
def _zoom_squish(c, scale:uniform=1.0, squish:uniform=1.0, invert:rand_bool=False,
row_pct:uniform=0.5, col_pct:uniform=0.5):
m = _compute_zs_mat(c.size, scale, squish, invert, row_pct, col_pct)
return _affine_mult(c, FloatTensor(m))
zoom_squish = TfmCoord(_zoom_squish)
def rand_resize_crop(size:int, max_scale:float=2., ratios:Tuple[float,float]=(0.75,1.33)):
"Randomly resize and crop the image to a ratio in `ratios` after a zoom of `max_scale`."
return [zoom_squish(scale=(1.,max_scale,8), squish=(*ratios,8), invert=(0.5,8), row_pct=(0.,1.), col_pct=(0.,1.)),
crop(size=size)]