Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
jupyter-naas
GitHub Repository: jupyter-naas/awesome-notebooks
Path: blob/master/Canny/Canny_Read.ipynb
2973 views
Kernel: Python 3

Canny.png

Tags: #canny #product #operations #snippet

Last update: 2023-04-12 (Created: 2021-01-26)

Description: This notebook is a comprehensive guide to understanding and applying the Canny edge detection algorithm.

Input

Import librairies

import requests import json import pandas as pd

API key

canny_api = "CANNY_API_KEY" # api key of canny

Model

Connecting to canny

class canny: def __init__(self, api_key): self.api_key = api_key def read(self): canny_api = self.api_key response = requests.get("https://canny.io/api/v1/posts/list") api_key = {"apiKey": canny_api} board_id = {"id": ""} limit = {"limit": "100"} data = {**api_key, **board_id, **limit} response = requests.post("https://canny.io/api/v1/posts/list", data) post_details = response.json() pd.set_option("mode.chained_assignment", None) dd = post_details["posts"] df = pd.DataFrame(columns=dd[0].keys()) for i in range(len(dd)): df = df.append(dd[i], ignore_index=True) df = df.rename( columns={ "details": "POST_DETAIL", "status": "STATUS", "title": "POST_NAME", "board": "BOARD", "category": "CATEGORY", "id": "BOARD_ID", } ) board = [] category = [] tags = [] eta = [] created = [] for i in range(len(df)): board.append(df["BOARD"][i]["name"]) created.append(df["BOARD"][i]["created"]) if not df["CATEGORY"][i]: category.append("Not assigned") else: category.append(df["CATEGORY"][i]["name"]) if not df["tags"][i]: tags.append("Not assigned") else: tags.append(df["tags"][i][0]["name"]) if not df["eta"][i]: eta.append("Not assigned") else: eta.append(df["eta"][i]) df1 = df[["POST_NAME", "POST_DETAIL", "STATUS", "BOARD_ID"]] df1["BOARD"] = board df1["CREATED"] = created df1["ETA"] = eta df1["CATEGORY"] = category df1["TAGS"] = tags return df1

Post Retrieve

canny(canny_api).read()

Output

Save as csv

canny(canny_api).read().to_csv("naas_canny.csv")