Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
keras-team
GitHub Repository: keras-team/keras-io
Path: blob/master/examples/audio/md/ctc_asr.md
8214 views

Automatic Speech Recognition using CTC

Authors: Mohamed Reda Bouadjenek and Ngoc Dung Huynh
Date created: 2021/09/26
Last modified: 2026/01/27
Description: Training a CTC-based model for automatic speech recognition.

View in Colab GitHub source


Introduction

Speech recognition is an interdisciplinary subfield of computer science and computational linguistics that develops methodologies and technologies that enable the recognition and translation of spoken language into text by computers. It is also known as automatic speech recognition (ASR), computer speech recognition or speech to text (STT). It incorporates knowledge and research in the computer science, linguistics and computer engineering fields.

This demonstration shows how to combine a 2D CNN, RNN and a Connectionist Temporal Classification (CTC) loss to build an ASR. CTC is an algorithm used to train deep neural networks in speech recognition, handwriting recognition and other sequence problems. CTC is used when we don’t know how the input aligns with the output (how the characters in the transcript align to the audio). The model we create is similar to DeepSpeech2.

We will use the LJSpeech dataset from the LibriVox project. It consists of short audio clips of a single speaker reading passages from 7 non-fiction books.

We will evaluate the quality of the model using Word Error Rate (WER). WER is obtained by adding up the substitutions, insertions, and deletions that occur in a sequence of recognized words. Divide that number by the total number of words originally spoken. The result is the WER. To get the WER score you need to install the jiwer package. You can use the following command line:

pip install jiwer

References:


Setup

import pandas as pd import numpy as np import tensorflow as tf import keras from keras import layers from keras import ops import matplotlib.pyplot as plt from IPython import display from jiwer import wer
``` WARNING: All log messages before absl::InitializeLog() is called are written to STDERR E0000 00:00:1770807431.103047 3901 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered E0000 00:00:1770807431.107368 3901 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered W0000 00:00:1770807431.118439 3901 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once. W0000 00:00:1770807431.118450 3901 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once. W0000 00:00:1770807431.118451 3901 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once. W0000 00:00:1770807431.118453 3901 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once. ```

Load the LJSpeech Dataset

Let's download the LJSpeech Dataset. The dataset contains 13,100 audio files as wav files in the /wavs/ folder. The label (transcript) for each audio file is a string given in the metadata.csv file. The fields are:

  • ID: this is the name of the corresponding .wav file

  • Transcription: words spoken by the reader (UTF-8)

  • Normalized transcription: transcription with numbers, ordinals, and monetary units expanded into full words (UTF-8).

For this demo we will use on the "Normalized transcription" field.

Each audio file is a single-channel 16-bit PCM WAV with a sample rate of 22,050 Hz.

data_url = "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2" data_path = keras.utils.get_file("LJSpeech-1.1", data_url, untar=True) wavs_path = data_path + "/LJSpeech-1.1/wavs/" metadata_path = data_path + "/LJSpeech-1.1" + "/metadata.csv" # Read metadata file and parse it metadata_df = pd.read_csv(metadata_path, sep="|", header=None, quoting=3) metadata_df.columns = ["file_name", "transcription", "normalized_transcription"] metadata_df = metadata_df[["file_name", "normalized_transcription"]] metadata_df = metadata_df.sample(frac=1).reset_index(drop=True) metadata_df.head(3)
``` Downloading data from https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2

2748572632/2748572632 ━━━━━━━━━━━━━━━━━━━━ 7s 0us/step

</div> <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } <div class="k-default-codeblock">

.dataframe tbody tr th { vertical-align: top; }

.dataframe thead th { text-align: right; }

</div> </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>file_name</th> <th>normalized_transcription</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>LJ049-0116</td> <td>of such persons as have been constitutionally ...</td> </tr> <tr> <th>1</th> <td>LJ038-0248</td> <td>was also identified by Marina Oswald as having...</td> </tr> <tr> <th>2</th> <td>LJ047-0129</td> <td>FBI informants in the New Orleans area, famili...</td> </tr> </tbody> </table> </div> We now split the data into training and validation set. ```python split = int(len(metadata_df) * 0.90) df_train = metadata_df[:split] df_val = metadata_df[split:] print(f"Size of the training set: {len(df_train)}") print(f"Size of the training set: {len(df_val)}")
``` Size of the training set: 11790 Size of the training set: 1310 ```

Preprocessing

We first prepare the vocabulary to be used.

# The set of characters accepted in the transcription. characters = [x for x in "abcdefghijklmnopqrstuvwxyz'?! "] # Mapping characters to integers char_to_num = keras.layers.StringLookup(vocabulary=characters, oov_token="") # Mapping integers back to original characters num_to_char = keras.layers.StringLookup( vocabulary=char_to_num.get_vocabulary(), oov_token="", invert=True ) print( f"The vocabulary is: {char_to_num.get_vocabulary()} " f"(size ={char_to_num.vocabulary_size()})" )
``` The vocabulary is: ['', np.str_('a'), np.str_('b'), np.str_('c'), np.str_('d'), np.str_('e'), np.str_('f'), np.str_('g'), np.str_('h'), np.str_('i'), np.str_('j'), np.str_('k'), np.str_('l'), np.str_('m'), np.str_('n'), np.str_('o'), np.str_('p'), np.str_('q'), np.str_('r'), np.str_('s'), np.str_('t'), np.str_('u'), np.str_('v'), np.str_('w'), np.str_('x'), np.str_('y'), np.str_('z'), np.str_("'"), np.str_('?'), np.str_('!'), np.str_(' ')] (size =31) ```

Next, we create the function that describes the transformation that we apply to each element of our dataset.

# An integer scalar Tensor. The window length in samples. frame_length = 256 # An integer scalar Tensor. The number of samples to step. frame_step = 160 # An integer scalar Tensor. The size of the FFT to apply. # If not provided, uses the smallest power of 2 enclosing frame_length. fft_length = 384 def encode_single_sample(wav_file, label): ########################################### ## Process the Audio ########################################## # 1. Read wav file file = tf.io.read_file(wavs_path + wav_file + ".wav") # 2. Decode the wav file audio, _ = tf.audio.decode_wav(file) audio = ops.squeeze(audio) # 3. Change type to float audio = ops.cast(audio, "float32") # 4. Get the spectrogram stft_output = ops.stft( audio, sequence_length=frame_length, sequence_stride=frame_step, fft_length=fft_length, center=False, ) # 5. We only need the magnitude, which can be computed from real and imaginary parts # stft returns (real, imag) tuple - compute magnitude as sqrt(real^2 + imag^2) spectrogram = ops.sqrt(ops.square(stft_output[0]) + ops.square(stft_output[1])) spectrogram = ops.power(spectrogram, 0.5) # 6. normalisation means = ops.mean(spectrogram, axis=1, keepdims=True) stddevs = ops.std(spectrogram, axis=1, keepdims=True) spectrogram = (spectrogram - means) / (stddevs + 1e-10) ########################################### ## Process the label ########################################## # 7. Convert label to Lower case label = tf.strings.lower(label) # 8. Split the label label = tf.strings.unicode_split(label, input_encoding="UTF-8") # 9. Map the characters in label to numbers label = char_to_num(label) # 10. Return a dict as our model is expecting two inputs return spectrogram, label

Creating Dataset objects

We create a tf.data.Dataset object that yields the transformed elements, in the same order as they appeared in the input.

batch_size = 32 # Define the training dataset train_dataset = tf.data.Dataset.from_tensor_slices( (list(df_train["file_name"]), list(df_train["normalized_transcription"])) ) train_dataset = ( train_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE) .padded_batch(batch_size, padded_shapes=([None, fft_length // 2 + 1], [None])) .prefetch(buffer_size=tf.data.AUTOTUNE) ) # Define the validation dataset validation_dataset = tf.data.Dataset.from_tensor_slices( (list(df_val["file_name"]), list(df_val["normalized_transcription"])) ) validation_dataset = ( validation_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE) .padded_batch(batch_size, padded_shapes=([None, fft_length // 2 + 1], [None])) .prefetch(buffer_size=tf.data.AUTOTUNE) )

Visualize the data

Let's visualize an example in our dataset, including the audio clip, the spectrogram and the corresponding label.

fig = plt.figure(figsize=(8, 5)) for batch in train_dataset.take(1): spectrogram = batch[0][0].numpy() spectrogram = np.array([np.trim_zeros(x) for x in np.transpose(spectrogram)]) label = batch[1][0] # Spectrogram label = tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8") ax = plt.subplot(2, 1, 1) ax.imshow(spectrogram, vmax=1) ax.set_title(label) ax.axis("off") # Wav file = tf.io.read_file(wavs_path + list(df_train["file_name"])[0] + ".wav") audio, _ = tf.audio.decode_wav(file) audio = audio.numpy() ax = plt.subplot(2, 1, 2) plt.plot(audio) ax.set_title("Signal Wave") ax.set_xlim(0, len(audio)) display.display(display.Audio(np.transpose(audio), rate=16000)) plt.show()
Your browser does not support the audio element.

png


Model

We first define the CTC Loss function.

def CTCLoss(y_true, y_pred): # Compute the training-time loss value batch_len = ops.shape(y_true)[0] input_length = ops.shape(y_pred)[1] label_length = ops.shape(y_true)[1] # Create length tensors - CTC needs to know the actual sequence lengths input_length = input_length * ops.ones(shape=(batch_len,), dtype="int32") label_length = label_length * ops.ones(shape=(batch_len,), dtype="int32") # Use Keras ops CTC loss (backend-agnostic) # Note: mask_index should match the blank token index # With StringLookup(oov_token=""), index 0 is reserved, so we use 0 as mask loss = ops.nn.ctc_loss( target=ops.cast(y_true, "int32"), output=y_pred, target_length=label_length, output_length=input_length, mask_index=0, ) return loss

We now define our model. We will define a model similar to DeepSpeech2.

def build_model(input_dim, output_dim, rnn_layers=5, rnn_units=128): """Model similar to DeepSpeech2.""" # Model's input input_spectrogram = layers.Input((None, input_dim), name="input") # Expand the dimension to use 2D CNN. x = layers.Reshape((-1, input_dim, 1), name="expand_dim")(input_spectrogram) # Convolution layer 1 x = layers.Conv2D( filters=32, kernel_size=[11, 41], strides=[2, 2], padding="same", use_bias=False, name="conv_1", )(x) x = layers.BatchNormalization(name="conv_1_bn")(x) x = layers.ReLU(name="conv_1_relu")(x) # Convolution layer 2 x = layers.Conv2D( filters=32, kernel_size=[11, 21], strides=[1, 2], padding="same", use_bias=False, name="conv_2", )(x) x = layers.BatchNormalization(name="conv_2_bn")(x) x = layers.ReLU(name="conv_2_relu")(x) # Reshape the resulted volume to feed the RNNs layers x = layers.Reshape((-1, x.shape[-2] * x.shape[-1]))(x) # RNN layers for i in range(1, rnn_layers + 1): recurrent = layers.GRU( units=rnn_units, activation="tanh", recurrent_activation="sigmoid", use_bias=True, return_sequences=True, reset_after=True, name=f"gru_{i}", ) x = layers.Bidirectional( recurrent, name=f"bidirectional_{i}", merge_mode="concat" )(x) if i < rnn_layers: x = layers.Dropout(rate=0.5)(x) # Dense layer x = layers.Dense(units=rnn_units * 2, name="dense_1")(x) x = layers.ReLU(name="dense_1_relu")(x) x = layers.Dropout(rate=0.5)(x) # Classification layer output = layers.Dense(units=output_dim + 1, activation="softmax")(x) # Model model = keras.Model(input_spectrogram, output, name="DeepSpeech_2") # Optimizer opt = keras.optimizers.Adam(learning_rate=1e-4) # Compile the model and return model.compile(optimizer=opt, loss=CTCLoss) return model # Get the model model = build_model( input_dim=fft_length // 2 + 1, output_dim=char_to_num.vocabulary_size(), rnn_units=512, ) model.summary(line_length=110)
Model: "DeepSpeech_2"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓
┃ Layer (type)                                    Output Shape                                     Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩
│ input (InputLayer)                             │ (None, None, 193)                   │                   0 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ expand_dim (Reshape)                           │ (None, None, 193, 1)                │                   0 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ conv_1 (Conv2D)                                │ (None, None, 97, 32)                │              14,432 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ conv_1_bn (BatchNormalization)                 │ (None, None, 97, 32)                │                 128 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ conv_1_relu (ReLU)                             │ (None, None, 97, 32)                │                   0 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ conv_2 (Conv2D)                                │ (None, None, 49, 32)                │             236,544 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ conv_2_bn (BatchNormalization)                 │ (None, None, 49, 32)                │                 128 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ conv_2_relu (ReLU)                             │ (None, None, 49, 32)                │                   0 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ reshape (Reshape)                              │ (None, None, 1568)                  │                   0 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ bidirectional_1 (Bidirectional)                │ (None, None, 1024)                  │           6,395,904 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ dropout (Dropout)                              │ (None, None, 1024)                  │                   0 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ bidirectional_2 (Bidirectional)                │ (None, None, 1024)                  │           4,724,736 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ dropout_1 (Dropout)                            │ (None, None, 1024)                  │                   0 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ bidirectional_3 (Bidirectional)                │ (None, None, 1024)                  │           4,724,736 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ dropout_2 (Dropout)                            │ (None, None, 1024)                  │                   0 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ bidirectional_4 (Bidirectional)                │ (None, None, 1024)                  │           4,724,736 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ dropout_3 (Dropout)                            │ (None, None, 1024)                  │                   0 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ bidirectional_5 (Bidirectional)                │ (None, None, 1024)                  │           4,724,736 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ dense_1 (Dense)                                │ (None, None, 1024)                  │           1,049,600 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ dense_1_relu (ReLU)                            │ (None, None, 1024)                  │                   0 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ dropout_4 (Dropout)                            │ (None, None, 1024)                  │                   0 │
├────────────────────────────────────────────────┼─────────────────────────────────────┼─────────────────────┤
│ dense (Dense)                                  │ (None, None, 32)                    │              32,800 │
└────────────────────────────────────────────────┴─────────────────────────────────────┴─────────────────────┘
 Total params: 26,628,480 (101.58 MB)
 Trainable params: 26,628,352 (101.58 MB)
 Non-trainable params: 128 (512.00 B)

Training and Evaluating

# A utility function to decode the output of the network def decode_batch_predictions(pred): input_len = np.ones(pred.shape[0]) * pred.shape[1] # Use Keras ops CTC decoder with greedy strategy (backend-agnostic) decoded = ops.nn.ctc_decode( inputs=pred, sequence_lengths=ops.cast(input_len, "int32"), strategy="greedy", mask_index=0, ) # ctc_decode returns a tuple of (decoded_sequences, log_probabilities) # For greedy strategy, decoded_sequences has shape: (1, batch_size, max_length) # So we need decoded[0][0] to get the batch with shape (batch_size, max_length) decoded_sequences = decoded[0][0] # Convert to numpy once for the whole batch decoded_sequences = ops.convert_to_numpy(decoded_sequences) # Iterate over the results and get back the text output_text = [] for sequence in decoded_sequences: # Remove padding/mask values (0 is the mask index) sequence = sequence[sequence > 0] # Convert indices to characters text = tf.strings.reduce_join(num_to_char(sequence)).numpy().decode("utf-8") output_text.append(text) return output_text # A callback class to output a few transcriptions during training class CallbackEval(keras.callbacks.Callback): """Displays a batch of outputs after every epoch.""" def __init__(self, dataset): super().__init__() self.dataset = dataset def on_epoch_end(self, epoch: int, logs=None): predictions = [] targets = [] # Limit to 10 batches to avoid long evaluation times for i, batch in enumerate(self.dataset): if i >= 10: break X, y = batch print(f"Batch {i}: X shape = {X.shape}, y shape = {y.shape}") batch_predictions = model.predict(X, verbose=0) print(f"Batch {i}: predictions shape = {batch_predictions.shape}") batch_predictions = decode_batch_predictions(batch_predictions) print(f"Batch {i}: decoded {len(batch_predictions)} predictions") predictions.extend(batch_predictions) for label in y: label = ( tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8") ) targets.append(label) print(f"\nTotal: {len(predictions)} predictions, {len(targets)} targets") wer_score = wer(targets, predictions) print("-" * 100) print(f"Word Error Rate: {wer_score:.4f}") print("-" * 100) for i in np.random.randint(0, len(predictions), 2): print(f"Target : {targets[i]}") print(f"Prediction: {predictions[i]}") print("-" * 100)

Let's start the training process.

# Define the number of epochs. epochs = 1 # Callback function to check transcription on the val set. validation_callback = CallbackEval(validation_dataset) # Train the model history = model.fit( train_dataset, validation_data=validation_dataset, epochs=epochs, callbacks=[validation_callback], )
``` 369/369 ━━━━━━━━━━━━━━━━━━━━ 0s 10s/step - loss: 1379.7394

Batch 0: X shape = (32, 1370, 193), y shape = (32, 148)

Batch 0: predictions shape = (32, 685, 32) Batch 0: decoded 32 predictions Batch 1: X shape = (32, 1373, 193), y shape = (32, 159)

Batch 1: predictions shape = (32, 687, 32) Batch 1: decoded 32 predictions Batch 2: X shape = (32, 1389, 193), y shape = (32, 167)

Batch 2: predictions shape = (32, 695, 32) Batch 2: decoded 32 predictions Batch 3: X shape = (32, 1327, 193), y shape = (32, 162)

Batch 3: predictions shape = (32, 664, 32) Batch 3: decoded 32 predictions Batch 4: X shape = (32, 1373, 193), y shape = (32, 165)

Batch 4: predictions shape = (32, 687, 32) Batch 4: decoded 32 predictions Batch 5: X shape = (32, 1354, 193), y shape = (32, 149)

Batch 5: predictions shape = (32, 677, 32) Batch 5: decoded 32 predictions Batch 6: X shape = (32, 1388, 193), y shape = (32, 168)

Batch 6: predictions shape = (32, 694, 32) Batch 6: decoded 32 predictions Batch 7: X shape = (32, 1381, 193), y shape = (32, 171)

Batch 7: predictions shape = (32, 691, 32) Batch 7: decoded 32 predictions Batch 8: X shape = (32, 1383, 193), y shape = (32, 155)

Batch 8: predictions shape = (32, 692, 32) Batch 8: decoded 32 predictions Batch 9: X shape = (32, 1386, 193), y shape = (32, 149)

Batch 9: predictions shape = (32, 693, 32) Batch 9: decoded 32 predictions

Total: 320 predictions, 320 targets

Word Error Rate: 1.0000

Target : they set out but at leeds wakefield found himself called suddenly to paris Prediction:

Target : would have seemed somewhat serious to us even though i must admit that none of these in themselves would be Prediction:

369/369 ━━━━━━━━━━━━━━━━━━━━ 4065s 11s/step - loss: 1362.6790 - val_loss: 1365.2762

</div> --- ## Inference ```python # Let's check results on more validation samples predictions = [] targets = [] for batch in validation_dataset: X, y = batch batch_predictions = model.predict(X) batch_predictions = decode_batch_predictions(batch_predictions) predictions.extend(batch_predictions) for label in y: label = tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8") targets.append(label) wer_score = wer(targets, predictions) print("-" * 100) print(f"Word Error Rate: {wer_score:.4f}") print("-" * 100) for i in np.random.randint(0, len(predictions), 5): print(f"Target : {targets[i]}") print(f"Prediction: {predictions[i]}") print("-" * 100)
``` 1/1 ━━━━━━━━━━━━━━━━━━━━ 4s 4s/step

Word Error Rate: 1.0000

Target : parts of the walls of nineveh are still standing to the height of one hundred and twentyfive feet Prediction:

Target : on the return flight mrs kennedy sat with david powers kenneth o'donnell and lawrence o'brien Prediction:

Target : so that i know not where we can hope to find any absolute distinction between animals and plants unless we return to their mode of nutrition Prediction:

Target : testified that she was quote quite hysterical end quote and was quote crying and upset end quote Prediction:

Target : and was investigating him at the time of the assassination the commission has taken the testimony of bureau agents Prediction:

</div> --- ## Conclusion In practice, you should train for around 50 epochs or more. Each epoch takes approximately 8-10 minutes using a `Colab A100` GPU. The model we trained at 50 epochs has a `Word Error Rate (WER) ≈ 16% to 17%`. Some of the transcriptions around epoch 50: **Audio file: LJ017-0009.wav**
  • Target : sir thomas overbury was undoubtedly poisoned by lord rochester in the reign of james the first

  • Prediction: cer thomas overbery was undoubtedly poisoned by lordrochester in the reign of james the first

**Audio file: LJ003-0340.wav**
  • Target : the committee does not seem to have yet understood that newgate could be only and properly replaced

  • Prediction: the committee does not seem to have yet understood that newgate could be only and proberly replace

**Audio file: LJ011-0136.wav**
  • Target : still no sentence of death was carried out for the offense and in eighteen thirtytwo

  • Prediction: still no sentence of death was carried out for the offense and in eighteen thirtytwo

Example available on HuggingFace. | Trained Model | Demo | | :--: | :--: | | [![Generic badge](https://img.shields.io/badge/🤗%20Model-CTC%20ASR-black.svg)](https://huggingface.co /keras-io/ctc_asr)