Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
keras-team
GitHub Repository: keras-team/keras-io
Path: blob/master/examples/vision/ipynb/masked_image_modeling.ipynb
3236 views
Kernel: Python 3

Masked image modeling with Autoencoders

Author: Aritra Roy Gosthipaty, Sayak Paul
Date created: 2021/12/20
Last modified: 2021/12/21
Description: Implementing Masked Autoencoders for self-supervised pretraining.

Introduction

In deep learning, models with growing capacity and capability can easily overfit on large datasets (ImageNet-1K). In the field of natural language processing, the appetite for data has been successfully addressed by self-supervised pretraining.

In the academic paper Masked Autoencoders Are Scalable Vision Learners by He et. al. the authors propose a simple yet effective method to pretrain large vision models (here ViT Huge). Inspired from the pretraining algorithm of BERT (Devlin et al.), they mask patches of an image and, through an autoencoder predict the masked patches. In the spirit of "masked language modeling", this pretraining task could be referred to as "masked image modeling".

In this example, we implement Masked Autoencoders Are Scalable Vision Learners with the CIFAR-10 dataset. After pretraining a scaled down version of ViT, we also implement the linear evaluation pipeline on CIFAR-10.

This implementation covers (MAE refers to Masked Autoencoder):

  • The masking algorithm

  • MAE encoder

  • MAE decoder

  • Evaluation with linear probing

As a reference, we reuse some of the code presented in this example.

Imports

import os os.environ["KERAS_BACKEND"] = "tensorflow" import tensorflow as tf import keras from keras import layers import matplotlib.pyplot as plt import numpy as np import random # Setting seeds for reproducibility. SEED = 42 keras.utils.set_random_seed(SEED)

Hyperparameters for pretraining

Please feel free to change the hyperparameters and check your results. The best way to get an intuition about the architecture is to experiment with it. Our hyperparameters are heavily inspired by the design guidelines laid out by the authors in the original paper.

# DATA BUFFER_SIZE = 1024 BATCH_SIZE = 256 AUTO = tf.data.AUTOTUNE INPUT_SHAPE = (32, 32, 3) NUM_CLASSES = 10 # OPTIMIZER LEARNING_RATE = 5e-3 WEIGHT_DECAY = 1e-4 # PRETRAINING EPOCHS = 100 # AUGMENTATION IMAGE_SIZE = 48 # We will resize input images to this size. PATCH_SIZE = 6 # Size of the patches to be extracted from the input images. NUM_PATCHES = (IMAGE_SIZE // PATCH_SIZE) ** 2 MASK_PROPORTION = 0.75 # We have found 75% masking to give us the best results. # ENCODER and DECODER LAYER_NORM_EPS = 1e-6 ENC_PROJECTION_DIM = 128 DEC_PROJECTION_DIM = 64 ENC_NUM_HEADS = 4 ENC_LAYERS = 6 DEC_NUM_HEADS = 4 DEC_LAYERS = ( 2 # The decoder is lightweight but should be reasonably deep for reconstruction. ) ENC_TRANSFORMER_UNITS = [ ENC_PROJECTION_DIM * 2, ENC_PROJECTION_DIM, ] # Size of the transformer layers. DEC_TRANSFORMER_UNITS = [ DEC_PROJECTION_DIM * 2, DEC_PROJECTION_DIM, ]

Load and prepare the CIFAR-10 dataset

(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data() (x_train, y_train), (x_val, y_val) = ( (x_train[:40000], y_train[:40000]), (x_train[40000:], y_train[40000:]), ) print(f"Training samples: {len(x_train)}") print(f"Validation samples: {len(x_val)}") print(f"Testing samples: {len(x_test)}") train_ds = tf.data.Dataset.from_tensor_slices(x_train) train_ds = train_ds.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(AUTO) val_ds = tf.data.Dataset.from_tensor_slices(x_val) val_ds = val_ds.batch(BATCH_SIZE).prefetch(AUTO) test_ds = tf.data.Dataset.from_tensor_slices(x_test) test_ds = test_ds.batch(BATCH_SIZE).prefetch(AUTO)

Data augmentation

In previous self-supervised pretraining methodologies (SimCLR alike), we have noticed that the data augmentation pipeline plays an important role. On the other hand the authors of this paper point out that Masked Autoencoders do not rely on augmentations. They propose a simple augmentation pipeline of:

  • Resizing

  • Random cropping (fixed-sized or random sized)

  • Random horizontal flipping

def get_train_augmentation_model(): model = keras.Sequential( [ layers.Rescaling(1 / 255.0), layers.Resizing(INPUT_SHAPE[0] + 20, INPUT_SHAPE[0] + 20), layers.RandomCrop(IMAGE_SIZE, IMAGE_SIZE), layers.RandomFlip("horizontal"), ], name="train_data_augmentation", ) return model def get_test_augmentation_model(): model = keras.Sequential( [ layers.Rescaling(1 / 255.0), layers.Resizing(IMAGE_SIZE, IMAGE_SIZE), ], name="test_data_augmentation", ) return model

A layer for extracting patches from images

This layer takes images as input and divides them into patches. The layer also includes two utility method:

  • show_patched_image -- Takes a batch of images and its corresponding patches to plot a random pair of image and patches.

  • reconstruct_from_patch -- Takes a single instance of patches and stitches them together into the original image.

class Patches(layers.Layer): def __init__(self, patch_size=PATCH_SIZE, **kwargs): super().__init__(**kwargs) self.patch_size = patch_size # Assuming the image has three channels each patch would be # of size (patch_size, patch_size, 3). self.resize = layers.Reshape((-1, patch_size * patch_size * 3)) def call(self, images): # Create patches from the input images patches = tf.image.extract_patches( images=images, sizes=[1, self.patch_size, self.patch_size, 1], strides=[1, self.patch_size, self.patch_size, 1], rates=[1, 1, 1, 1], padding="VALID", ) # Reshape the patches to (batch, num_patches, patch_area) and return it. patches = self.resize(patches) return patches def show_patched_image(self, images, patches): # This is a utility function which accepts a batch of images and its # corresponding patches and help visualize one image and its patches # side by side. idx = np.random.choice(patches.shape[0]) print(f"Index selected: {idx}.") plt.figure(figsize=(4, 4)) plt.imshow(keras.utils.array_to_img(images[idx])) plt.axis("off") plt.show() n = int(np.sqrt(patches.shape[1])) plt.figure(figsize=(4, 4)) for i, patch in enumerate(patches[idx]): ax = plt.subplot(n, n, i + 1) patch_img = tf.reshape(patch, (self.patch_size, self.patch_size, 3)) plt.imshow(keras.utils.img_to_array(patch_img)) plt.axis("off") plt.show() # Return the index chosen to validate it outside the method. return idx # taken from https://stackoverflow.com/a/58082878/10319735 def reconstruct_from_patch(self, patch): # This utility function takes patches from a *single* image and # reconstructs it back into the image. This is useful for the train # monitor callback. num_patches = patch.shape[0] n = int(np.sqrt(num_patches)) patch = tf.reshape(patch, (num_patches, self.patch_size, self.patch_size, 3)) rows = tf.split(patch, n, axis=0) rows = [tf.concat(tf.unstack(x), axis=1) for x in rows] reconstructed = tf.concat(rows, axis=0) return reconstructed

Let's visualize the image patches.

# Get a batch of images. image_batch = next(iter(train_ds)) # Augment the images. augmentation_model = get_train_augmentation_model() augmented_images = augmentation_model(image_batch) # Define the patch layer. patch_layer = Patches() # Get the patches from the batched images. patches = patch_layer(images=augmented_images) # Now pass the images and the corresponding patches # to the `show_patched_image` method. random_index = patch_layer.show_patched_image(images=augmented_images, patches=patches) # Chose the same chose image and try reconstructing the patches # into the original image. image = patch_layer.reconstruct_from_patch(patches[random_index]) plt.imshow(image) plt.axis("off") plt.show()

Patch encoding with masking

Quoting the paper

Following ViT, we divide an image into regular non-overlapping patches. Then we sample a subset of patches and mask (i.e., remove) the remaining ones. Our sampling strategy is straightforward: we sample random patches without replacement, following a uniform distribution. We simply refer to this as “random sampling”.

This layer includes masking and encoding the patches.

The utility methods of the layer are:

  • get_random_indices -- Provides the mask and unmask indices.

  • generate_masked_image -- Takes patches and unmask indices, results in a random masked image. This is an essential utility method for our training monitor callback (defined later).

class PatchEncoder(layers.Layer): def __init__( self, patch_size=PATCH_SIZE, projection_dim=ENC_PROJECTION_DIM, mask_proportion=MASK_PROPORTION, downstream=False, **kwargs, ): super().__init__(**kwargs) self.patch_size = patch_size self.projection_dim = projection_dim self.mask_proportion = mask_proportion self.downstream = downstream # This is a trainable mask token initialized randomly from a normal # distribution. self.mask_token = tf.Variable( tf.random.normal([1, patch_size * patch_size * 3]), trainable=True ) def build(self, input_shape): (_, self.num_patches, self.patch_area) = input_shape # Create the projection layer for the patches. self.projection = layers.Dense(units=self.projection_dim) # Create the positional embedding layer. self.position_embedding = layers.Embedding( input_dim=self.num_patches, output_dim=self.projection_dim ) # Number of patches that will be masked. self.num_mask = int(self.mask_proportion * self.num_patches) def call(self, patches): # Get the positional embeddings. batch_size = tf.shape(patches)[0] positions = tf.range(start=0, limit=self.num_patches, delta=1) pos_embeddings = self.position_embedding(positions[tf.newaxis, ...]) pos_embeddings = tf.tile( pos_embeddings, [batch_size, 1, 1] ) # (B, num_patches, projection_dim) # Embed the patches. patch_embeddings = ( self.projection(patches) + pos_embeddings ) # (B, num_patches, projection_dim) if self.downstream: return patch_embeddings else: mask_indices, unmask_indices = self.get_random_indices(batch_size) # The encoder input is the unmasked patch embeddings. Here we gather # all the patches that should be unmasked. unmasked_embeddings = tf.gather( patch_embeddings, unmask_indices, axis=1, batch_dims=1 ) # (B, unmask_numbers, projection_dim) # Get the unmasked and masked position embeddings. We will need them # for the decoder. unmasked_positions = tf.gather( pos_embeddings, unmask_indices, axis=1, batch_dims=1 ) # (B, unmask_numbers, projection_dim) masked_positions = tf.gather( pos_embeddings, mask_indices, axis=1, batch_dims=1 ) # (B, mask_numbers, projection_dim) # Repeat the mask token number of mask times. # Mask tokens replace the masks of the image. mask_tokens = tf.repeat(self.mask_token, repeats=self.num_mask, axis=0) mask_tokens = tf.repeat( mask_tokens[tf.newaxis, ...], repeats=batch_size, axis=0 ) # Get the masked embeddings for the tokens. masked_embeddings = self.projection(mask_tokens) + masked_positions return ( unmasked_embeddings, # Input to the encoder. masked_embeddings, # First part of input to the decoder. unmasked_positions, # Added to the encoder outputs. mask_indices, # The indices that were masked. unmask_indices, # The indices that were unmaksed. ) def get_random_indices(self, batch_size): # Create random indices from a uniform distribution and then split # it into mask and unmask indices. rand_indices = tf.argsort( tf.random.uniform(shape=(batch_size, self.num_patches)), axis=-1 ) mask_indices = rand_indices[:, : self.num_mask] unmask_indices = rand_indices[:, self.num_mask :] return mask_indices, unmask_indices def generate_masked_image(self, patches, unmask_indices): # Choose a random patch and it corresponding unmask index. idx = np.random.choice(patches.shape[0]) patch = patches[idx] unmask_index = unmask_indices[idx] # Build a numpy array of same shape as patch. new_patch = np.zeros_like(patch) # Iterate of the new_patch and plug the unmasked patches. count = 0 for i in range(unmask_index.shape[0]): new_patch[unmask_index[i]] = patch[unmask_index[i]] return new_patch, idx

Let's see the masking process in action on a sample image.

# Create the patch encoder layer. patch_encoder = PatchEncoder() # Get the embeddings and positions. ( unmasked_embeddings, masked_embeddings, unmasked_positions, mask_indices, unmask_indices, ) = patch_encoder(patches=patches) # Show a maksed patch image. new_patch, random_index = patch_encoder.generate_masked_image(patches, unmask_indices) plt.figure(figsize=(10, 10)) plt.subplot(1, 2, 1) img = patch_layer.reconstruct_from_patch(new_patch) plt.imshow(keras.utils.array_to_img(img)) plt.axis("off") plt.title("Masked") plt.subplot(1, 2, 2) img = augmented_images[random_index] plt.imshow(keras.utils.array_to_img(img)) plt.axis("off") plt.title("Original") plt.show()

MLP

This serves as the fully connected feed forward network of the transformer architecture.

def mlp(x, dropout_rate, hidden_units): for units in hidden_units: x = layers.Dense(units, activation=tf.nn.gelu)(x) x = layers.Dropout(dropout_rate)(x) return x

MAE encoder

The MAE encoder is ViT. The only point to note here is that the encoder outputs a layer normalized output.

def create_encoder(num_heads=ENC_NUM_HEADS, num_layers=ENC_LAYERS): inputs = layers.Input((None, ENC_PROJECTION_DIM)) x = inputs for _ in range(num_layers): # Layer normalization 1. x1 = layers.LayerNormalization(epsilon=LAYER_NORM_EPS)(x) # Create a multi-head attention layer. attention_output = layers.MultiHeadAttention( num_heads=num_heads, key_dim=ENC_PROJECTION_DIM, dropout=0.1 )(x1, x1) # Skip connection 1. x2 = layers.Add()([attention_output, x]) # Layer normalization 2. x3 = layers.LayerNormalization(epsilon=LAYER_NORM_EPS)(x2) # MLP. x3 = mlp(x3, hidden_units=ENC_TRANSFORMER_UNITS, dropout_rate=0.1) # Skip connection 2. x = layers.Add()([x3, x2]) outputs = layers.LayerNormalization(epsilon=LAYER_NORM_EPS)(x) return keras.Model(inputs, outputs, name="mae_encoder")

MAE decoder

The authors point out that they use an asymmetric autoencoder model. They use a lightweight decoder that takes "<10% computation per token vs. the encoder". We are not specific with the "<10% computation" in our implementation but have used a smaller decoder (both in terms of depth and projection dimensions).

def create_decoder( num_layers=DEC_LAYERS, num_heads=DEC_NUM_HEADS, image_size=IMAGE_SIZE ): inputs = layers.Input((NUM_PATCHES, ENC_PROJECTION_DIM)) x = layers.Dense(DEC_PROJECTION_DIM)(inputs) for _ in range(num_layers): # Layer normalization 1. x1 = layers.LayerNormalization(epsilon=LAYER_NORM_EPS)(x) # Create a multi-head attention layer. attention_output = layers.MultiHeadAttention( num_heads=num_heads, key_dim=DEC_PROJECTION_DIM, dropout=0.1 )(x1, x1) # Skip connection 1. x2 = layers.Add()([attention_output, x]) # Layer normalization 2. x3 = layers.LayerNormalization(epsilon=LAYER_NORM_EPS)(x2) # MLP. x3 = mlp(x3, hidden_units=DEC_TRANSFORMER_UNITS, dropout_rate=0.1) # Skip connection 2. x = layers.Add()([x3, x2]) x = layers.LayerNormalization(epsilon=LAYER_NORM_EPS)(x) x = layers.Flatten()(x) pre_final = layers.Dense(units=image_size * image_size * 3, activation="sigmoid")(x) outputs = layers.Reshape((image_size, image_size, 3))(pre_final) return keras.Model(inputs, outputs, name="mae_decoder")

MAE trainer

This is the trainer module. We wrap the encoder and decoder inside of a tf.keras.Model subclass. This allows us to customize what happens in the model.fit() loop.

class MaskedAutoencoder(keras.Model): def __init__( self, train_augmentation_model, test_augmentation_model, patch_layer, patch_encoder, encoder, decoder, **kwargs, ): super().__init__(**kwargs) self.train_augmentation_model = train_augmentation_model self.test_augmentation_model = test_augmentation_model self.patch_layer = patch_layer self.patch_encoder = patch_encoder self.encoder = encoder self.decoder = decoder def calculate_loss(self, images, test=False): # Augment the input images. if test: augmented_images = self.test_augmentation_model(images) else: augmented_images = self.train_augmentation_model(images) # Patch the augmented images. patches = self.patch_layer(augmented_images) # Encode the patches. ( unmasked_embeddings, masked_embeddings, unmasked_positions, mask_indices, unmask_indices, ) = self.patch_encoder(patches) # Pass the unmaksed patche to the encoder. encoder_outputs = self.encoder(unmasked_embeddings) # Create the decoder inputs. encoder_outputs = encoder_outputs + unmasked_positions decoder_inputs = tf.concat([encoder_outputs, masked_embeddings], axis=1) # Decode the inputs. decoder_outputs = self.decoder(decoder_inputs) decoder_patches = self.patch_layer(decoder_outputs) loss_patch = tf.gather(patches, mask_indices, axis=1, batch_dims=1) loss_output = tf.gather(decoder_patches, mask_indices, axis=1, batch_dims=1) # Compute the total loss. total_loss = self.compute_loss(y=loss_patch, y_pred=loss_output) return total_loss, loss_patch, loss_output def train_step(self, images): with tf.GradientTape() as tape: total_loss, loss_patch, loss_output = self.calculate_loss(images) # Apply gradients. train_vars = [ self.train_augmentation_model.trainable_variables, self.patch_layer.trainable_variables, self.patch_encoder.trainable_variables, self.encoder.trainable_variables, self.decoder.trainable_variables, ] grads = tape.gradient(total_loss, train_vars) tv_list = [] for grad, var in zip(grads, train_vars): for g, v in zip(grad, var): tv_list.append((g, v)) self.optimizer.apply_gradients(tv_list) # Report progress. results = {} for metric in self.metrics: metric.update_state(loss_patch, loss_output) results[metric.name] = metric.result() return results def test_step(self, images): total_loss, loss_patch, loss_output = self.calculate_loss(images, test=True) # Update the trackers. results = {} for metric in self.metrics: metric.update_state(loss_patch, loss_output) results[metric.name] = metric.result() return results

Model initialization

train_augmentation_model = get_train_augmentation_model() test_augmentation_model = get_test_augmentation_model() patch_layer = Patches() patch_encoder = PatchEncoder() encoder = create_encoder() decoder = create_decoder() mae_model = MaskedAutoencoder( train_augmentation_model=train_augmentation_model, test_augmentation_model=test_augmentation_model, patch_layer=patch_layer, patch_encoder=patch_encoder, encoder=encoder, decoder=decoder, )

Training callbacks

Visualization callback

# Taking a batch of test inputs to measure model's progress. test_images = next(iter(test_ds)) class TrainMonitor(keras.callbacks.Callback): def __init__(self, epoch_interval=None): self.epoch_interval = epoch_interval def on_epoch_end(self, epoch, logs=None): if self.epoch_interval and epoch % self.epoch_interval == 0: test_augmented_images = self.model.test_augmentation_model(test_images) test_patches = self.model.patch_layer(test_augmented_images) ( test_unmasked_embeddings, test_masked_embeddings, test_unmasked_positions, test_mask_indices, test_unmask_indices, ) = self.model.patch_encoder(test_patches) test_encoder_outputs = self.model.encoder(test_unmasked_embeddings) test_encoder_outputs = test_encoder_outputs + test_unmasked_positions test_decoder_inputs = tf.concat( [test_encoder_outputs, test_masked_embeddings], axis=1 ) test_decoder_outputs = self.model.decoder(test_decoder_inputs) # Show a maksed patch image. test_masked_patch, idx = self.model.patch_encoder.generate_masked_image( test_patches, test_unmask_indices ) print(f"\nIdx chosen: {idx}") original_image = test_augmented_images[idx] masked_image = self.model.patch_layer.reconstruct_from_patch( test_masked_patch ) reconstructed_image = test_decoder_outputs[idx] fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(15, 5)) ax[0].imshow(original_image) ax[0].set_title(f"Original: {epoch:03d}") ax[1].imshow(masked_image) ax[1].set_title(f"Masked: {epoch:03d}") ax[2].imshow(reconstructed_image) ax[2].set_title(f"Resonstructed: {epoch:03d}") plt.show() plt.close()

Learning rate scheduler

# Some code is taken from: # https://www.kaggle.com/ashusma/training-rfcx-tensorflow-tpu-effnet-b2. class WarmUpCosine(keras.optimizers.schedules.LearningRateSchedule): def __init__( self, learning_rate_base, total_steps, warmup_learning_rate, warmup_steps ): super().__init__() self.learning_rate_base = learning_rate_base self.total_steps = total_steps self.warmup_learning_rate = warmup_learning_rate self.warmup_steps = warmup_steps self.pi = tf.constant(np.pi) def __call__(self, step): if self.total_steps < self.warmup_steps: raise ValueError("Total_steps must be larger or equal to warmup_steps.") cos_annealed_lr = tf.cos( self.pi * (tf.cast(step, tf.float32) - self.warmup_steps) / float(self.total_steps - self.warmup_steps) ) learning_rate = 0.5 * self.learning_rate_base * (1 + cos_annealed_lr) if self.warmup_steps > 0: if self.learning_rate_base < self.warmup_learning_rate: raise ValueError( "Learning_rate_base must be larger or equal to " "warmup_learning_rate." ) slope = ( self.learning_rate_base - self.warmup_learning_rate ) / self.warmup_steps warmup_rate = slope * tf.cast(step, tf.float32) + self.warmup_learning_rate learning_rate = tf.where( step < self.warmup_steps, warmup_rate, learning_rate ) return tf.where( step > self.total_steps, 0.0, learning_rate, name="learning_rate" ) total_steps = int((len(x_train) / BATCH_SIZE) * EPOCHS) warmup_epoch_percentage = 0.15 warmup_steps = int(total_steps * warmup_epoch_percentage) scheduled_lrs = WarmUpCosine( learning_rate_base=LEARNING_RATE, total_steps=total_steps, warmup_learning_rate=0.0, warmup_steps=warmup_steps, ) lrs = [scheduled_lrs(step) for step in range(total_steps)] plt.plot(lrs) plt.xlabel("Step", fontsize=14) plt.ylabel("LR", fontsize=14) plt.show() # Assemble the callbacks. train_callbacks = [TrainMonitor(epoch_interval=5)]

Model compilation and training

optimizer = keras.optimizers.AdamW( learning_rate=scheduled_lrs, weight_decay=WEIGHT_DECAY ) # Compile and pretrain the model. mae_model.compile( optimizer=optimizer, loss=keras.losses.MeanSquaredError(), metrics=["mae"] ) history = mae_model.fit( train_ds, epochs=EPOCHS, validation_data=val_ds, callbacks=train_callbacks, ) # Measure its performance. loss, mae = mae_model.evaluate(test_ds) print(f"Loss: {loss:.2f}") print(f"MAE: {mae:.2f}")

Evaluation with linear probing

Extract the encoder model along with other layers

# Extract the augmentation layers. train_augmentation_model = mae_model.train_augmentation_model test_augmentation_model = mae_model.test_augmentation_model # Extract the patchers. patch_layer = mae_model.patch_layer patch_encoder = mae_model.patch_encoder patch_encoder.downstream = True # Swtich the downstream flag to True. # Extract the encoder. encoder = mae_model.encoder # Pack as a model. downstream_model = keras.Sequential( [ layers.Input((IMAGE_SIZE, IMAGE_SIZE, 3)), patch_layer, patch_encoder, encoder, layers.BatchNormalization(), # Refer to A.1 (Linear probing). layers.GlobalAveragePooling1D(), layers.Dense(NUM_CLASSES, activation="softmax"), ], name="linear_probe_model", ) # Only the final classification layer of the `downstream_model` should be trainable. for layer in downstream_model.layers[:-1]: layer.trainable = False downstream_model.summary()

We are using average pooling to extract learned representations from the MAE encoder. Another approach would be to use a learnable dummy token inside the encoder during pretraining (resembling the [CLS] token). Then we can extract representations from that token during the downstream tasks.

Prepare datasets for linear probing

def prepare_data(images, labels, is_train=True): if is_train: augmentation_model = train_augmentation_model else: augmentation_model = test_augmentation_model dataset = tf.data.Dataset.from_tensor_slices((images, labels)) if is_train: dataset = dataset.shuffle(BUFFER_SIZE) dataset = dataset.batch(BATCH_SIZE).map( lambda x, y: (augmentation_model(x), y), num_parallel_calls=AUTO ) return dataset.prefetch(AUTO) train_ds = prepare_data(x_train, y_train) val_ds = prepare_data(x_train, y_train, is_train=False) test_ds = prepare_data(x_test, y_test, is_train=False)

Perform linear probing

linear_probe_epochs = 50 linear_prob_lr = 0.1 warm_epoch_percentage = 0.1 steps = int((len(x_train) // BATCH_SIZE) * linear_probe_epochs) warmup_steps = int(steps * warm_epoch_percentage) scheduled_lrs = WarmUpCosine( learning_rate_base=linear_prob_lr, total_steps=steps, warmup_learning_rate=0.0, warmup_steps=warmup_steps, ) optimizer = keras.optimizers.SGD(learning_rate=scheduled_lrs, momentum=0.9) downstream_model.compile( optimizer=optimizer, loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) downstream_model.fit(train_ds, validation_data=val_ds, epochs=linear_probe_epochs) loss, accuracy = downstream_model.evaluate(test_ds) accuracy = round(accuracy * 100, 2) print(f"Accuracy on the test set: {accuracy}%.")

We believe that with a more sophisticated hyperparameter tuning process and a longer pretraining it is possible to improve this performance further. For comparison, we took the encoder architecture and trained it from scratch in a fully supervised manner. This gave us ~76% test top-1 accuracy. The authors of MAE demonstrates strong performance on the ImageNet-1k dataset as well as other downstream tasks like object detection and semantic segmentation.

Final notes

We refer the interested readers to other examples on self-supervised learning present on keras.io:

This idea of using BERT flavored pretraining in computer vision was also explored in Selfie, but it could not demonstrate strong results. Another concurrent work that explores the idea of masked image modeling is SimMIM. Finally, as a fun fact, we, the authors of this example also explored the idea of "reconstruction as a pretext task" in 2020 but we could not prevent the network from representation collapse, and hence we did not get strong downstream performance.

We would like to thank Xinlei Chen (one of the authors of MAE) for helpful discussions. We are grateful to JarvisLabs and Google Developers Experts program for helping with GPU credits.