Path: blob/master/quickstarts/keras_hub_quickstart.ipynb
3273 views
Kernel: Python 3
KerasHub quickstart
We recommend running this example in Colab's GPU runtime. It will run on Jax, TensorFlow or PyTorch, simply change the line below.
In [ ]:
In [ ]:
Ask questions with an instruction tuned Gemma checkpoint
In [ ]:
In [ ]:
In [ ]:
<start_of_turn>user
Write a short python program to print the first 100 primes.
<end_of_turn>
<start_of_turn>model
```python
def is_prime(num):
"""Checks if a number is prime."""
if num <= 1:
return False
for i in range(2, int(num**0.5) + 1):
if num % i == 0:
return False
return True
count = 0
num = 2
primes = []
while count < 100:
if is_prime(num):
primes.append(num)
count += 1
num += 1
print("The first 100 prime numbers are:", primes)
```
**Explanation:**
1. **`is_prime(num)` function:**
- Takes an integer `num` as input.
- Returns `False` if `num` is less than or equal to 1 (not prime).
- Iterates from 2 to the square root of `num`. If `num` is divisible by any number in this range, it's not prime, so it returns `False`.
- If the loop completes without finding a divisor, `num` is prime, and it returns `True`.
2. **Main loop:**
- Initializes `count` to 0 (to keep track of how many primes we've found).
- Initializes `num` to 2 (the first prime number).
- Creates an empty list `primes` to store the prime numbers.
- Enters a `while` loop that continues until `count` reaches 100 (we've found 100 primes).
- Inside the loop:
- Calls `is_prime(num)` to check if the current `num` is prime.
- If it's prime:
- Appends `num` to the `primes` list.
- Increments `count`.
- Increments `num` to check the next number.
3. **Output:**
- After the loop, prints the `primes` list, which contains the first 100 prime numbers.
Let me know if you'd like to explore other prime number algorithms or have any more questions!
<end_of_turn>
In [ ]:
Generate images with Stable Diffusion 3
In [ ]:
Downloading from https://www.kaggle.com/api/v1/models/keras/stablediffusion3/keras/stable_diffusion_3_medium/3/download/config.json...
100%|██████████| 3.07k/3.07k [00:00<00:00, 2.45MB/s]
Downloading from https://www.kaggle.com/api/v1/models/keras/stablediffusion3/keras/stable_diffusion_3_medium/3/download/model.weights.h5...
100%|██████████| 5.57G/5.57G [04:57<00:00, 20.1MB/s]
Downloading from https://www.kaggle.com/api/v1/models/keras/stablediffusion3/keras/stable_diffusion_3_medium/3/download/preprocessor.json...
100%|██████████| 4.08k/4.08k [00:00<00:00, 3.50MB/s]
Downloading from https://www.kaggle.com/api/v1/models/keras/stablediffusion3/keras/stable_diffusion_3_medium/3/download/assets/clip_l_tokenizer/vocabulary.json...
100%|██████████| 976k/976k [00:01<00:00, 863kB/s]
Downloading from https://www.kaggle.com/api/v1/models/keras/stablediffusion3/keras/stable_diffusion_3_medium/3/download/assets/clip_l_tokenizer/merges.txt...
100%|██████████| 512k/512k [00:00<00:00, 571kB/s]
Downloading from https://www.kaggle.com/api/v1/models/keras/stablediffusion3/keras/stable_diffusion_3_medium/3/download/assets/clip_g_tokenizer/vocabulary.json...
100%|██████████| 976k/976k [00:01<00:00, 872kB/s]
Downloading from https://www.kaggle.com/api/v1/models/keras/stablediffusion3/keras/stable_diffusion_3_medium/3/download/assets/clip_g_tokenizer/merges.txt...
100%|██████████| 512k/512k [00:00<00:00, 576kB/s]
In [ ]:
In [ ]: