Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
keras-team
GitHub Repository: keras-team/keras-io
Path: blob/master/scripts/examples_master.py
3273 views
1
EXAMPLES_MASTER = {
2
"path": "examples/",
3
"title": "Code examples",
4
"toc": False,
5
"children": [
6
{
7
"path": "vision/",
8
"title": "Computer Vision",
9
"toc": True,
10
"children": [
11
# Image classification
12
{
13
"path": "image_classification_from_scratch",
14
"title": "Image classification from scratch",
15
"subcategory": "Image classification",
16
"highlight": True,
17
"keras_3": True,
18
},
19
{
20
"path": "mnist_convnet",
21
"title": "Simple MNIST convnet",
22
"subcategory": "Image classification",
23
"highlight": True,
24
"keras_3": True,
25
},
26
{
27
"path": "image_classification_efficientnet_fine_tuning",
28
"title": "Image classification via fine-tuning with EfficientNet",
29
"subcategory": "Image classification",
30
"highlight": True,
31
"keras_3": True,
32
},
33
{
34
"path": "image_classification_with_vision_transformer",
35
"title": "Image classification with Vision Transformer",
36
"subcategory": "Image classification",
37
"keras_3": True,
38
},
39
{
40
"path": "attention_mil_classification",
41
"title": "Classification using Attention-based Deep Multiple Instance Learning",
42
"subcategory": "Image classification",
43
"keras_3": True,
44
},
45
{
46
"path": "mlp_image_classification",
47
"title": "Image classification with modern MLP models",
48
"subcategory": "Image classification",
49
"keras_3": True,
50
},
51
{
52
"path": "mobilevit",
53
"title": "A mobile-friendly Transformer-based model for image classification",
54
"subcategory": "Image classification",
55
"keras_3": True,
56
},
57
{
58
"path": "xray_classification_with_tpus",
59
"title": "Pneumonia Classification on TPU",
60
"subcategory": "Image classification",
61
"keras_3": True,
62
},
63
{
64
"path": "cct",
65
"title": "Compact Convolutional Transformers",
66
"subcategory": "Image classification",
67
"keras_3": True,
68
},
69
{
70
"path": "convmixer",
71
"title": "Image classification with ConvMixer",
72
"subcategory": "Image classification",
73
"keras_3": True,
74
},
75
{
76
"path": "eanet",
77
"title": "Image classification with EANet (External Attention Transformer)",
78
"subcategory": "Image classification",
79
"keras_3": True,
80
},
81
{
82
"path": "involution",
83
"title": "Involutional neural networks",
84
"subcategory": "Image classification",
85
"keras_3": True,
86
},
87
{
88
"path": "perceiver_image_classification",
89
"title": "Image classification with Perceiver",
90
"subcategory": "Image classification",
91
"keras_3": True,
92
},
93
{
94
"path": "reptile",
95
"title": "Few-Shot learning with Reptile",
96
"subcategory": "Image classification",
97
"keras_3": True,
98
},
99
{
100
"path": "semisupervised_simclr",
101
"title": "Semi-supervised image classification using contrastive pretraining with SimCLR",
102
"subcategory": "Image classification",
103
"keras_3": True,
104
},
105
{
106
"path": "swin_transformers",
107
"title": "Image classification with Swin Transformers",
108
"subcategory": "Image classification",
109
"keras_3": True,
110
},
111
{
112
"path": "vit_small_ds",
113
"title": "Train a Vision Transformer on small datasets",
114
"subcategory": "Image classification",
115
"keras_3": True,
116
},
117
{
118
"path": "shiftvit",
119
"title": "A Vision Transformer without Attention",
120
"subcategory": "Image classification",
121
"keras_3": True,
122
},
123
{
124
"path": "image_classification_using_global_context_vision_transformer",
125
"title": "Image Classification using Global Context Vision Transformer",
126
"subcategory": "Image classification",
127
"keras_3": True,
128
},
129
{
130
"path": "temporal_latent_bottleneck",
131
"title": "When Recurrence meets Transformers",
132
"subcategory": "Image classification",
133
"keras_3": True,
134
},
135
# Image segmentation
136
{
137
"path": "oxford_pets_image_segmentation",
138
"title": "Image segmentation with a U-Net-like architecture",
139
"subcategory": "Image segmentation",
140
"highlight": True,
141
"keras_3": True,
142
},
143
{
144
"path": "deeplabv3_plus",
145
"title": "Multiclass semantic segmentation using DeepLabV3+",
146
"subcategory": "Image segmentation",
147
"keras_3": True,
148
},
149
{
150
"path": "basnet_segmentation",
151
"title": "Highly accurate boundaries segmentation using BASNet",
152
"subcategory": "Image segmentation",
153
},
154
{
155
"path": "fully_convolutional_network",
156
"title": "Image Segmentation using Composable Fully-Convolutional Networks",
157
"subcategory": "Image segmentation",
158
"keras_3": True,
159
},
160
# Object Detection
161
{
162
"path": "retinanet",
163
"title": "Object Detection with RetinaNet",
164
"subcategory": "Object detection",
165
},
166
{
167
"path": "keypoint_detection",
168
"title": "Keypoint Detection with Transfer Learning",
169
"subcategory": "Object detection",
170
"keras_3": True,
171
},
172
{
173
"path": "object_detection_using_vision_transformer",
174
"title": "Object detection with Vision Transformers",
175
"subcategory": "Object detection",
176
"keras_3": True,
177
},
178
# 3D
179
{
180
"path": "3D_image_classification",
181
"title": "3D image classification from CT scans",
182
"subcategory": "3D",
183
"keras_3": True,
184
},
185
{
186
"path": "depth_estimation",
187
"title": "Monocular depth estimation",
188
"subcategory": "3D",
189
"keras_3": True,
190
},
191
{
192
"path": "nerf",
193
"title": "3D volumetric rendering with NeRF",
194
"subcategory": "3D",
195
"keras_3": True,
196
"highlight": True,
197
},
198
{
199
"path": "pointnet_segmentation",
200
"title": "Point cloud segmentation with PointNet",
201
"subcategory": "3D",
202
"keras_3": True,
203
},
204
{
205
"path": "pointnet",
206
"title": "Point cloud classification",
207
"subcategory": "3D",
208
"keras_3": True,
209
},
210
# OCR
211
{
212
"path": "captcha_ocr",
213
"title": "OCR model for reading Captchas",
214
"subcategory": "OCR",
215
"keras_3": True,
216
},
217
{
218
"path": "handwriting_recognition",
219
"title": "Handwriting recognition",
220
"subcategory": "OCR",
221
"keras_3": True,
222
},
223
# Image enhancement
224
{
225
"path": "autoencoder",
226
"title": "Convolutional autoencoder for image denoising",
227
"subcategory": "Image enhancement",
228
"keras_3": True,
229
},
230
{
231
"path": "mirnet",
232
"title": "Low-light image enhancement using MIRNet",
233
"subcategory": "Image enhancement",
234
"keras_3": True,
235
},
236
{
237
"path": "super_resolution_sub_pixel",
238
"title": "Image Super-Resolution using an Efficient Sub-Pixel CNN",
239
"subcategory": "Image enhancement",
240
"keras_3": True,
241
},
242
{
243
"path": "edsr",
244
"title": "Enhanced Deep Residual Networks for single-image super-resolution",
245
"subcategory": "Image enhancement",
246
"keras_3": True,
247
},
248
{
249
"path": "zero_dce",
250
"title": "Zero-DCE for low-light image enhancement",
251
"subcategory": "Image enhancement",
252
"keras_3": True,
253
},
254
# Data augmentation
255
{
256
"path": "cutmix",
257
"title": "CutMix data augmentation for image classification",
258
"subcategory": "Data augmentation",
259
"keras_3": True,
260
},
261
{
262
"path": "mixup",
263
"title": "MixUp augmentation for image classification",
264
"subcategory": "Data augmentation",
265
"keras_3": True,
266
},
267
{
268
"path": "randaugment",
269
"title": "RandAugment for Image Classification for Improved Robustness",
270
"subcategory": "Data augmentation",
271
"keras_3": True,
272
},
273
# Image & Text
274
{
275
"path": "image_captioning",
276
"title": "Image captioning",
277
"subcategory": "Image & Text",
278
"highlight": True,
279
"keras_3": True,
280
},
281
{
282
"path": "nl_image_search",
283
"title": "Natural language image search with a Dual Encoder",
284
"subcategory": "Image & Text",
285
},
286
# Vision models interpretability
287
{
288
"path": "visualizing_what_convnets_learn",
289
"title": "Visualizing what convnets learn",
290
"subcategory": "Vision models interpretability",
291
"keras_3": True,
292
},
293
{
294
"path": "integrated_gradients",
295
"title": "Model interpretability with Integrated Gradients",
296
"subcategory": "Vision models interpretability",
297
"keras_3": True,
298
},
299
{
300
"path": "probing_vits",
301
"title": "Investigating Vision Transformer representations",
302
"subcategory": "Vision models interpretability",
303
"keras_3": True,
304
},
305
{
306
"path": "grad_cam",
307
"title": "Grad-CAM class activation visualization",
308
"subcategory": "Vision models interpretability",
309
"keras_3": True,
310
},
311
# Image similarity search
312
{
313
"path": "near_dup_search",
314
"title": "Near-duplicate image search",
315
"subcategory": "Image similarity search",
316
},
317
{
318
"path": "semantic_image_clustering",
319
"title": "Semantic Image Clustering",
320
"subcategory": "Image similarity search",
321
"keras_3": True,
322
},
323
{
324
"path": "siamese_contrastive",
325
"title": "Image similarity estimation using a Siamese Network with a contrastive loss",
326
"subcategory": "Image similarity search",
327
"keras_3": True,
328
},
329
{
330
"path": "siamese_network",
331
"title": "Image similarity estimation using a Siamese Network with a triplet loss",
332
"subcategory": "Image similarity search",
333
"keras_3": True,
334
},
335
{
336
"path": "metric_learning",
337
"title": "Metric learning for image similarity search",
338
"subcategory": "Image similarity search",
339
"keras_3": True,
340
},
341
{
342
"path": "metric_learning_tf_similarity",
343
"title": "Metric learning for image similarity search using TensorFlow Similarity",
344
"subcategory": "Image similarity search",
345
},
346
{
347
"path": "nnclr",
348
"title": "Self-supervised contrastive learning with NNCLR",
349
"subcategory": "Image similarity search",
350
"keras_3": True,
351
},
352
# Video
353
{
354
"path": "video_classification",
355
"title": "Video Classification with a CNN-RNN Architecture",
356
"subcategory": "Video",
357
"keras_3": True,
358
},
359
{
360
"path": "conv_lstm",
361
"title": "Next-Frame Video Prediction with Convolutional LSTMs",
362
"subcategory": "Video",
363
"keras_3": True,
364
},
365
{
366
"path": "video_transformers",
367
"title": "Video Classification with Transformers",
368
"subcategory": "Video",
369
"keras_3": True,
370
},
371
{
372
"path": "vivit",
373
"title": "Video Vision Transformer",
374
"subcategory": "Video",
375
"keras_3": True,
376
},
377
{
378
"path": "bit",
379
"title": "Image Classification using BigTransfer (BiT)",
380
"subcategory": "Image classification",
381
"keras_3": True,
382
},
383
# Performance recipes
384
{
385
"path": "gradient_centralization",
386
"title": "Gradient Centralization for Better Training Performance",
387
"subcategory": "Performance recipes",
388
"keras_3": True,
389
},
390
{
391
"path": "token_learner",
392
"title": "Learning to tokenize in Vision Transformers",
393
"subcategory": "Performance recipes",
394
"keras_3": True,
395
},
396
{
397
"path": "knowledge_distillation",
398
"title": "Knowledge Distillation",
399
"subcategory": "Performance recipes",
400
"keras_3": True,
401
},
402
{
403
"path": "fixres",
404
"title": "FixRes: Fixing train-test resolution discrepancy",
405
"subcategory": "Performance recipes",
406
"keras_3": True,
407
},
408
{
409
"path": "cait",
410
"title": "Class Attention Image Transformers with LayerScale",
411
"subcategory": "Performance recipes",
412
"keras_3": True,
413
},
414
{
415
"path": "patch_convnet",
416
"title": "Augmenting convnets with aggregated attention",
417
"subcategory": "Performance recipes",
418
"keras_3": True,
419
},
420
{
421
"path": "learnable_resizer",
422
"title": "Learning to Resize",
423
"subcategory": "Performance recipes",
424
"keras_3": True,
425
},
426
],
427
},
428
{
429
"path": "nlp/",
430
"title": "Natural Language Processing",
431
"toc": True,
432
"children": [
433
# Text classification
434
{
435
"path": "text_classification_from_scratch",
436
"title": "Text classification from scratch",
437
"subcategory": "Text classification",
438
"highlight": True,
439
"keras_3": True,
440
},
441
{
442
"path": "active_learning_review_classification",
443
"title": "Review Classification using Active Learning",
444
"subcategory": "Text classification",
445
"keras_3": True,
446
},
447
{
448
"path": "fnet_classification_with_keras_hub",
449
"title": "Text Classification using FNet",
450
"subcategory": "Text classification",
451
"keras_3": True,
452
},
453
{
454
"path": "multi_label_classification",
455
"title": "Large-scale multi-label text classification",
456
"subcategory": "Text classification",
457
},
458
{
459
"path": "text_classification_with_transformer",
460
"title": "Text classification with Transformer",
461
"subcategory": "Text classification",
462
"keras_3": True,
463
},
464
{
465
"path": "text_classification_with_switch_transformer",
466
"title": "Text classification with Switch Transformer",
467
"subcategory": "Text classification",
468
"keras_3": True,
469
},
470
{
471
"path": "tweet-classification-using-tfdf",
472
"title": "Text classification using Decision Forests and pretrained embeddings",
473
"subcategory": "Text classification",
474
},
475
{
476
"path": "pretrained_word_embeddings",
477
"title": "Using pre-trained word embeddings",
478
"subcategory": "Text classification",
479
"keras_3": True,
480
},
481
{
482
"path": "bidirectional_lstm_imdb",
483
"title": "Bidirectional LSTM on IMDB",
484
"subcategory": "Text classification",
485
"keras_3": True,
486
},
487
{
488
"path": "data_parallel_training_with_keras_hub",
489
"title": "Data Parallel Training with KerasHub and tf.distribute",
490
"subcategory": "Text classification",
491
"keras_3": True,
492
},
493
# Machine translation
494
{
495
"path": "neural_machine_translation_with_keras_hub",
496
"title": "English-to-Spanish translation with KerasHub",
497
"subcategory": "Machine translation",
498
"keras_3": True,
499
},
500
{
501
"path": "neural_machine_translation_with_transformer",
502
"title": "English-to-Spanish translation with a sequence-to-sequence Transformer",
503
"subcategory": "Machine translation",
504
"highlight": True,
505
"keras_3": True,
506
},
507
{
508
"path": "lstm_seq2seq",
509
"title": "Character-level recurrent sequence-to-sequence model",
510
"subcategory": "Machine translation",
511
"keras_3": True,
512
},
513
# Entailement prediction
514
{
515
"path": "multimodal_entailment",
516
"title": "Multimodal entailment",
517
"subcategory": "Entailment prediction",
518
},
519
# Named entity recognition
520
{
521
"path": "ner_transformers",
522
"title": "Named Entity Recognition using Transformers",
523
"subcategory": "Named entity recognition",
524
"keras_3": True,
525
},
526
# Sequence-to-sequence
527
{
528
"path": "text_extraction_with_bert",
529
"title": "Text Extraction with BERT",
530
"subcategory": "Sequence-to-sequence",
531
},
532
{
533
"path": "addition_rnn",
534
"title": "Sequence to sequence learning for performing number addition",
535
"subcategory": "Sequence-to-sequence",
536
"keras_3": True,
537
},
538
# Text similarity search
539
{
540
"path": "semantic_similarity_with_keras_hub",
541
"title": "Semantic Similarity with KerasHub",
542
"subcategory": "Text similarity search",
543
"keras_3": True,
544
},
545
{
546
"path": "semantic_similarity_with_bert",
547
"title": "Semantic Similarity with BERT",
548
"subcategory": "Text similarity search",
549
"keras_3": True,
550
},
551
{
552
"path": "sentence_embeddings_with_sbert",
553
"title": "Sentence embeddings using Siamese RoBERTa-networks",
554
"subcategory": "Text similarity search",
555
"keras_3": True,
556
},
557
# Language modeling
558
{
559
"path": "masked_language_modeling",
560
"title": "End-to-end Masked Language Modeling with BERT",
561
"subcategory": "Language modeling",
562
"keras_3": True,
563
},
564
{
565
"path": "abstractive_summarization_with_bart",
566
"title": "Abstractive Text Summarization with BART",
567
"subcategory": "Language modeling",
568
"keras_3": True,
569
},
570
# Parameter efficient fine-tuning.
571
{
572
"path": "parameter_efficient_finetuning_of_gpt2_with_lora",
573
"title": "Parameter-efficient fine-tuning of GPT-2 with LoRA",
574
"subcategory": "Parameter efficient fine-tuning",
575
"keras_3": True,
576
},
577
# Remainder is autogenerated
578
],
579
},
580
{
581
"path": "structured_data/",
582
"title": "Structured Data",
583
"toc": True,
584
"children": [
585
{
586
"path": "structured_data_classification_with_feature_space",
587
"title": "Structured data classification with FeatureSpace",
588
"subcategory": "Structured data classification",
589
"highlight": True,
590
"keras_3": True,
591
},
592
{
593
"path": "feature_space_advanced",
594
"title": "FeatureSpace advanced use cases",
595
"subcategory": "Structured data classification",
596
"highlight": True,
597
"keras_3": True,
598
},
599
{
600
"path": "imbalanced_classification",
601
"title": "Imbalanced classification: credit card fraud detection",
602
"subcategory": "Structured data classification",
603
"highlight": True,
604
"keras_3": True,
605
},
606
{
607
"path": "structured_data_classification_from_scratch",
608
"title": "Structured data classification from scratch",
609
"subcategory": "Structured data classification",
610
"keras_3": True,
611
},
612
{
613
"path": "wide_deep_cross_networks",
614
"title": "Structured data learning with Wide, Deep, and Cross networks",
615
"subcategory": "Structured data classification",
616
"keras_3": True,
617
},
618
{
619
"path": "customer_lifetime_value",
620
"title": "Deep Learning for Customer Lifetime Value",
621
"subcategory": "Structured data regression",
622
"keras_3": True,
623
},
624
{
625
"path": "classification_with_grn_and_vsn",
626
"title": "Classification with Gated Residual and Variable Selection Networks",
627
"subcategory": "Structured data classification",
628
"keras_3": True,
629
},
630
{
631
"path": "classification_with_tfdf",
632
"title": "Classification with TensorFlow Decision Forests",
633
"subcategory": "Structured data classification",
634
},
635
{
636
"path": "deep_neural_decision_forests",
637
"title": "Classification with Neural Decision Forests",
638
"subcategory": "Structured data classification",
639
"keras_3": True,
640
},
641
{
642
"path": "tabtransformer",
643
"title": "Structured data learning with TabTransformer",
644
"subcategory": "Structured data classification",
645
"keras_3": True,
646
},
647
# Recommendation
648
{
649
"path": "collaborative_filtering_movielens",
650
"title": "Collaborative Filtering for Movie Recommendations",
651
"subcategory": "Recommendation",
652
"keras_3": True,
653
},
654
{
655
"path": "movielens_recommendations_transformers",
656
"title": "A Transformer-based recommendation system",
657
"subcategory": "Recommendation",
658
"keras_3": True,
659
},
660
],
661
},
662
{
663
"path": "timeseries/",
664
"title": "Timeseries",
665
"toc": True,
666
"children": [
667
# Timeseries classification
668
{
669
"path": "timeseries_classification_from_scratch",
670
"title": "Timeseries classification from scratch",
671
"subcategory": "Timeseries classification",
672
"highlight": True,
673
"keras_3": True,
674
},
675
{
676
"path": "timeseries_classification_transformer",
677
"title": "Timeseries classification with a Transformer model",
678
"subcategory": "Timeseries classification",
679
"keras_3": True,
680
},
681
{
682
"path": "eeg_signal_classification",
683
"title": "Electroencephalogram Signal Classification for action identification",
684
"subcategory": "Timeseries classification",
685
"keras_3": True,
686
},
687
{
688
"path": "event_classification_for_payment_card_fraud_detection",
689
"title": "Event classification for payment card fraud detection",
690
"subcategory": "Timeseries classification",
691
"keras_3": True,
692
},
693
# Anomaly detection
694
{
695
"path": "timeseries_anomaly_detection",
696
"title": "Timeseries anomaly detection using an Autoencoder",
697
"subcategory": "Anomaly detection",
698
"keras_3": True,
699
},
700
# Timeseries forecasting
701
{
702
"path": "timeseries_traffic_forecasting",
703
"title": "Traffic forecasting using graph neural networks and LSTM",
704
"subcategory": "Timeseries forecasting",
705
"keras_3": True,
706
},
707
{
708
"path": "timeseries_weather_forecasting",
709
"title": "Timeseries forecasting for weather prediction",
710
"subcategory": "Timeseries forecasting",
711
"keras_3": True,
712
},
713
],
714
},
715
{
716
"path": "generative/",
717
"title": "Generative Deep Learning",
718
"toc": True,
719
"children": [
720
# Image generation
721
{
722
"path": "ddim",
723
"title": "Denoising Diffusion Implicit Models",
724
"subcategory": "Image generation",
725
"highlight": True,
726
"keras_3": True,
727
},
728
{
729
"path": "random_walks_with_stable_diffusion_3",
730
"title": "A walk through latent space with Stable Diffusion 3",
731
"subcategory": "Image generation",
732
"highlight": True,
733
"keras_3": True,
734
},
735
{
736
"path": "dreambooth",
737
"title": "DreamBooth",
738
"subcategory": "Image generation",
739
},
740
{
741
"path": "ddpm",
742
"title": "Denoising Diffusion Probabilistic Models",
743
"subcategory": "Image generation",
744
},
745
{
746
"path": "fine_tune_via_textual_inversion",
747
"title": "Teach StableDiffusion new concepts via Textual Inversion",
748
"subcategory": "Image generation",
749
},
750
{
751
"path": "finetune_stable_diffusion",
752
"title": "Fine-tuning Stable Diffusion",
753
"subcategory": "Image generation",
754
},
755
{
756
"path": "vae",
757
"title": "Variational AutoEncoder",
758
"subcategory": "Image generation",
759
"keras_3": True,
760
},
761
{
762
"path": "dcgan_overriding_train_step",
763
"title": "GAN overriding Model.train_step",
764
"subcategory": "Image generation",
765
"keras_3": True,
766
},
767
{
768
"path": "wgan_gp",
769
"title": "WGAN-GP overriding Model.train_step",
770
"subcategory": "Image generation",
771
"keras_3": True,
772
},
773
{
774
"path": "conditional_gan",
775
"title": "Conditional GAN",
776
"subcategory": "Image generation",
777
"keras_3": True,
778
},
779
{
780
"path": "cyclegan",
781
"title": "CycleGAN",
782
"subcategory": "Image generation",
783
"keras_3": True,
784
},
785
{
786
"path": "gan_ada",
787
"title": "Data-efficient GANs with Adaptive Discriminator Augmentation",
788
"subcategory": "Image generation",
789
"keras_3": True,
790
},
791
{
792
"path": "deep_dream",
793
"title": "Deep Dream",
794
"subcategory": "Image generation",
795
"keras_3": True,
796
},
797
{
798
"path": "gaugan",
799
"title": "GauGAN for conditional image generation",
800
"subcategory": "Image generation",
801
"keras_3": True,
802
},
803
{
804
"path": "pixelcnn",
805
"title": "PixelCNN",
806
"subcategory": "Image generation",
807
"keras_3": True,
808
},
809
{
810
"path": "stylegan",
811
"title": "Face image generation with StyleGAN",
812
"subcategory": "Image generation",
813
},
814
{
815
"path": "vq_vae",
816
"title": "Vector-Quantized Variational Autoencoders",
817
"subcategory": "Image generation",
818
},
819
{
820
"path": "random_walks_with_stable_diffusion",
821
"title": "A walk through latent space with Stable Diffusion",
822
"subcategory": "Image generation",
823
"keras_3": True,
824
},
825
# Style transfer
826
{
827
"path": "neural_style_transfer",
828
"title": "Neural style transfer",
829
"subcategory": "Style transfer",
830
"keras_3": True,
831
},
832
{
833
"path": "adain",
834
"title": "Neural Style Transfer with AdaIN",
835
"subcategory": "Style transfer",
836
},
837
# Text generation
838
{
839
"path": "gpt2_text_generation_with_keras_hub",
840
"title": "GPT2 Text Generation with KerasHub",
841
"subcategory": "Text generation",
842
"highlight": True,
843
"keras_3": True,
844
},
845
{
846
"path": "text_generation_gpt",
847
"title": "GPT text generation from scratch with KerasHub",
848
"subcategory": "Text generation",
849
"keras_3": True,
850
},
851
{
852
"path": "text_generation_with_miniature_gpt",
853
"title": "Text generation with a miniature GPT",
854
"subcategory": "Text generation",
855
"keras_3": True,
856
},
857
{
858
"path": "lstm_character_level_text_generation",
859
"title": "Character-level text generation with LSTM",
860
"subcategory": "Text generation",
861
"keras_3": True,
862
},
863
{
864
"path": "text_generation_fnet",
865
"title": "Text Generation using FNet",
866
"subcategory": "Text generation",
867
},
868
# Audio / midi generation
869
{
870
"path": "midi_generation_with_transformer",
871
"title": "Music Generation with Transformer Models",
872
"subcategory": "Audio generation",
873
"keras_3": True,
874
},
875
# Graph generation
876
{
877
"path": "molecule_generation",
878
"title": "Drug Molecule Generation with VAE",
879
"subcategory": "Graph generation",
880
"keras_3": True,
881
},
882
{
883
"path": "wgan-graphs",
884
"title": "WGAN-GP with R-GCN for the generation of small molecular graphs",
885
"subcategory": "Graph generation",
886
},
887
],
888
},
889
{
890
"path": "audio/",
891
"title": "Audio Data",
892
"toc": True,
893
"children": [
894
{
895
"path": "vocal_track_separation",
896
"title": "Vocal Track Separation with Encoder-Decoder Architecture",
897
"subcategory": "Vocal track separation",
898
"keras_3": True,
899
},
900
{
901
"path": "transformer_asr",
902
"title": "Automatic Speech Recognition with Transformer",
903
"subcategory": "Speech recognition",
904
"keras_3": True,
905
},
906
# Rest will be autogenerated
907
],
908
},
909
{
910
"path": "rl/",
911
"title": "Reinforcement Learning",
912
"toc": True,
913
"children": [
914
{
915
"path": "actor_critic_cartpole",
916
"title": "Actor Critic Method",
917
"subcategory": "RL algorithms",
918
"keras_3": True,
919
},
920
{
921
"path": "ppo_cartpole",
922
"title": "Proximal Policy Optimization",
923
"subcategory": "RL algorithms",
924
"keras_3": True,
925
},
926
{
927
"path": "deep_q_network_breakout",
928
"title": "Deep Q-Learning for Atari Breakout",
929
"subcategory": "RL algorithms",
930
"keras_3": True,
931
},
932
{
933
"path": "ddpg_pendulum",
934
"title": "Deep Deterministic Policy Gradient (DDPG)",
935
"subcategory": "RL algorithms",
936
"keras_3": True,
937
},
938
# Rest will be autogenerated
939
],
940
},
941
{
942
"path": "graph/",
943
"title": "Graph Data",
944
"toc": True,
945
"children": [
946
# Will be autogenerated
947
],
948
},
949
{
950
"path": "keras_recipes/",
951
"title": "Quick Keras Recipes",
952
"toc": True,
953
"children": [
954
{
955
"path": "parameter_efficient_finetuning_of_gemma_with_lora_and_qlora",
956
"title": "Parameter-efficient fine-tuning of Gemma with LoRA and QLoRA",
957
"subcategory": "Keras usage tips",
958
"keras_3": True,
959
},
960
{
961
"path": "float8_training_and_inference_with_transformer",
962
"title": "Float8 training and inference with a simple Transformer model",
963
"subcategory": "Keras usage tips",
964
"keras_3": True,
965
},
966
{
967
"path": "tf_serving",
968
"title": "Serving TensorFlow models with TFServing",
969
"subcategory": "Serving",
970
"keras_3": True,
971
},
972
{
973
"path": "debugging_tips",
974
"title": "Keras debugging tips",
975
"subcategory": "Keras usage tips",
976
"keras_3": True,
977
},
978
{
979
"path": "subclassing_conv_layers",
980
"title": "Customizing the convolution operation of a Conv2D layer",
981
"subcategory": "Keras usage tips",
982
"keras_3": True,
983
},
984
{
985
"path": "trainer_pattern",
986
"title": "Trainer pattern",
987
"subcategory": "Keras usage tips",
988
"keras_3": True,
989
},
990
{
991
"path": "endpoint_layer_pattern",
992
"title": "Endpoint layer pattern",
993
"subcategory": "Keras usage tips",
994
"keras_3": True,
995
},
996
{
997
"path": "reproducibility_recipes",
998
"title": "Reproducibility in Keras Models",
999
"subcategory": "Keras usage tips",
1000
"keras_3": True,
1001
},
1002
{
1003
"path": "tensorflow_numpy_models",
1004
"title": "Writing Keras Models With TensorFlow NumPy",
1005
"subcategory": "Keras usage tips",
1006
"keras_3": True,
1007
},
1008
{
1009
"path": "antirectifier",
1010
"title": "Simple custom layer example: Antirectifier",
1011
"subcategory": "Keras usage tips",
1012
"keras_3": True,
1013
},
1014
{
1015
"path": "sample_size_estimate",
1016
"title": "Estimating required sample size for model training",
1017
"subcategory": "ML best practices",
1018
"keras_3": True,
1019
},
1020
{
1021
"path": "memory_efficient_embeddings",
1022
"title": "Memory-efficient embeddings for recommendation systems",
1023
"subcategory": "ML best practices",
1024
"keras_3": True,
1025
},
1026
{
1027
"path": "creating_tfrecords",
1028
"title": "Creating TFRecords",
1029
"subcategory": "ML best practices",
1030
"keras_3": True,
1031
},
1032
{
1033
"path": "packaging_keras_models_for_wide_distribution",
1034
"title": "Packaging Keras models for wide distribution using Functional Subclassing",
1035
"subcategory": "Keras usage tips",
1036
"keras_3": True,
1037
},
1038
# Rest will be autogenerated
1039
],
1040
},
1041
],
1042
}
1043
1044