Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
keras-team
GitHub Repository: keras-team/keras-io
Path: blob/master/templates/examples/audio/melgan_spectrogram_inversion.md
3297 views

MelGAN-based spectrogram inversion using feature matching

Author: Darshan Deshpande
Date created: 02/09/2021
Last modified: 15/09/2021

ⓘ This example uses Keras 2
[**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/audio/ipynb/melgan_spectrogram_inversion.ipynb) [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/audio/melgan_spectrogram_inversion.py)

Description: Inversion of audio from mel-spectrograms using the MelGAN architecture and feature matching.


Introduction

Autoregressive vocoders have been ubiquitous for a majority of the history of speech processing, but for most of their existence they have lacked parallelism. MelGAN is a non-autoregressive, fully convolutional vocoder architecture used for purposes ranging from spectral inversion and speech enhancement to present-day state-of-the-art speech synthesis when used as a decoder with models like Tacotron2 or FastSpeech that convert text to mel spectrograms.

In this tutorial, we will have a look at the MelGAN architecture and how it can achieve fast spectral inversion, i.e. conversion of spectrograms to audio waves. The MelGAN implemented in this tutorial is similar to the original implementation with only the difference of method of padding for convolutions where we will use 'same' instead of reflect padding.


Importing and Defining Hyperparameters

!pip install -qqq tensorflow_addons !pip install -qqq tensorflow-io
import tensorflow as tf import tensorflow_io as tfio from tensorflow import keras from tensorflow.keras import layers from tensorflow_addons import layers as addon_layers # Setting logger level to avoid input shape warnings tf.get_logger().setLevel("ERROR") # Defining hyperparameters DESIRED_SAMPLES = 8192 LEARNING_RATE_GEN = 1e-5 LEARNING_RATE_DISC = 1e-6 BATCH_SIZE = 16 mse = keras.losses.MeanSquaredError() mae = keras.losses.MeanAbsoluteError()
``` |████████████████████████████████| 1.1 MB 5.1 MB/s |████████████████████████████████| 22.7 MB 1.7 MB/s |████████████████████████████████| 2.1 MB 36.2 MB/s
</div> --- ## Loading the Dataset This example uses the [LJSpeech dataset](https://keithito.com/LJ-Speech-Dataset/). The LJSpeech dataset is primarily used for text-to-speech and consists of 13,100 discrete speech samples taken from 7 non-fiction books, having a total length of approximately 24 hours. The MelGAN training is only concerned with the audio waves so we process only the WAV files and ignore the audio annotations. ```python !wget https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2 !tar -xf /content/LJSpeech-1.1.tar.bz2
``` --2021-09-16 11:45:24-- https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2 Resolving data.keithito.com (data.keithito.com)... 174.138.79.61 Connecting to data.keithito.com (data.keithito.com)|174.138.79.61|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 2748572632 (2.6G) [application/octet-stream] Saving to: ‘LJSpeech-1.1.tar.bz2’ ```
``` LJSpeech-1.1.tar.bz 100%[===================>] 2.56G 68.3MB/s in 36s ```
``` 2021-09-16 11:46:01 (72.2 MB/s) - ‘LJSpeech-1.1.tar.bz2’ saved [2748572632/2748572632] ```

We create a tf.data.Dataset to load and process the audio files on the fly. The preprocess() function takes the file path as input and returns two instances of the wave, one for input and one as the ground truth for comparison. The input wave will be mapped to a spectrogram using the custom MelSpec layer as shown later in this example.

# Splitting the dataset into training and testing splits wavs = tf.io.gfile.glob("LJSpeech-1.1/wavs/*.wav") print(f"Number of audio files: {len(wavs)}") # Mapper function for loading the audio. This function returns two instances of the wave def preprocess(filename): audio = tf.audio.decode_wav(tf.io.read_file(filename), 1, DESIRED_SAMPLES).audio return audio, audio # Create tf.data.Dataset objects and apply preprocessing train_dataset = tf.data.Dataset.from_tensor_slices((wavs,)) train_dataset = train_dataset.map(preprocess, num_parallel_calls=tf.data.AUTOTUNE)
``` Number of audio files: 13100
</div> --- ## Defining custom layers for MelGAN The MelGAN architecture consists of 3 main modules: 1. The residual block 2. Dilated convolutional block 3. Discriminator block ![MelGAN](https://i.imgur.com/ZdxwzPG.png) Since the network takes a mel-spectrogram as input, we will create an additional custom layer which can convert the raw audio wave to a spectrogram on-the-fly. We use the raw audio tensor from `train_dataset` and map it to a mel-spectrogram using the `MelSpec` layer below. ```python # Custom keras layer for on-the-fly audio to spectrogram conversion class MelSpec(layers.Layer): def __init__( self, frame_length=1024, frame_step=256, fft_length=None, sampling_rate=22050, num_mel_channels=80, freq_min=125, freq_max=7600, **kwargs, ): super().__init__(**kwargs) self.frame_length = frame_length self.frame_step = frame_step self.fft_length = fft_length self.sampling_rate = sampling_rate self.num_mel_channels = num_mel_channels self.freq_min = freq_min self.freq_max = freq_max # Defining mel filter. This filter will be multiplied with the STFT output self.mel_filterbank = tf.signal.linear_to_mel_weight_matrix( num_mel_bins=self.num_mel_channels, num_spectrogram_bins=self.frame_length // 2 + 1, sample_rate=self.sampling_rate, lower_edge_hertz=self.freq_min, upper_edge_hertz=self.freq_max, ) def call(self, audio, training=True): # We will only perform the transformation during training. if training: # Taking the Short Time Fourier Transform. Ensure that the audio is padded. # In the paper, the STFT output is padded using the 'REFLECT' strategy. stft = tf.signal.stft( tf.squeeze(audio, -1), self.frame_length, self.frame_step, self.fft_length, pad_end=True, ) # Taking the magnitude of the STFT output magnitude = tf.abs(stft) # Multiplying the Mel-filterbank with the magnitude and scaling it using the db scale mel = tf.matmul(tf.square(magnitude), self.mel_filterbank) log_mel_spec = tfio.audio.dbscale(mel, top_db=80) return log_mel_spec else: return audio def get_config(self): config = super().get_config() config.update( { "frame_length": self.frame_length, "frame_step": self.frame_step, "fft_length": self.fft_length, "sampling_rate": self.sampling_rate, "num_mel_channels": self.num_mel_channels, "freq_min": self.freq_min, "freq_max": self.freq_max, } ) return config

The residual convolutional block extensively uses dilations and has a total receptive field of 27 timesteps per block. The dilations must grow as a power of the kernel_size to ensure reduction of hissing noise in the output. The network proposed by the paper is as follows:

ConvBlock

# Creating the residual stack block def residual_stack(input, filters): """Convolutional residual stack with weight normalization. Args: filters: int, determines filter size for the residual stack. Returns: Residual stack output. """ c1 = addon_layers.WeightNormalization( layers.Conv1D(filters, 3, dilation_rate=1, padding="same"), data_init=False )(input) lrelu1 = layers.LeakyReLU()(c1) c2 = addon_layers.WeightNormalization( layers.Conv1D(filters, 3, dilation_rate=1, padding="same"), data_init=False )(lrelu1) add1 = layers.Add()([c2, input]) lrelu2 = layers.LeakyReLU()(add1) c3 = addon_layers.WeightNormalization( layers.Conv1D(filters, 3, dilation_rate=3, padding="same"), data_init=False )(lrelu2) lrelu3 = layers.LeakyReLU()(c3) c4 = addon_layers.WeightNormalization( layers.Conv1D(filters, 3, dilation_rate=1, padding="same"), data_init=False )(lrelu3) add2 = layers.Add()([add1, c4]) lrelu4 = layers.LeakyReLU()(add2) c5 = addon_layers.WeightNormalization( layers.Conv1D(filters, 3, dilation_rate=9, padding="same"), data_init=False )(lrelu4) lrelu5 = layers.LeakyReLU()(c5) c6 = addon_layers.WeightNormalization( layers.Conv1D(filters, 3, dilation_rate=1, padding="same"), data_init=False )(lrelu5) add3 = layers.Add()([c6, add2]) return add3

Each convolutional block uses the dilations offered by the residual stack and upsamples the input data by the upsampling_factor.

# Dilated convolutional block consisting of the Residual stack def conv_block(input, conv_dim, upsampling_factor): """Dilated Convolutional Block with weight normalization. Args: conv_dim: int, determines filter size for the block. upsampling_factor: int, scale for upsampling. Returns: Dilated convolution block. """ conv_t = addon_layers.WeightNormalization( layers.Conv1DTranspose(conv_dim, 16, upsampling_factor, padding="same"), data_init=False, )(input) lrelu1 = layers.LeakyReLU()(conv_t) res_stack = residual_stack(lrelu1, conv_dim) lrelu2 = layers.LeakyReLU()(res_stack) return lrelu2

The discriminator block consists of convolutions and downsampling layers. This block is essential for the implementation of the feature matching technique.

Each discriminator outputs a list of feature maps that will be compared during training to compute the feature matching loss.

def discriminator_block(input): conv1 = addon_layers.WeightNormalization( layers.Conv1D(16, 15, 1, "same"), data_init=False )(input) lrelu1 = layers.LeakyReLU()(conv1) conv2 = addon_layers.WeightNormalization( layers.Conv1D(64, 41, 4, "same", groups=4), data_init=False )(lrelu1) lrelu2 = layers.LeakyReLU()(conv2) conv3 = addon_layers.WeightNormalization( layers.Conv1D(256, 41, 4, "same", groups=16), data_init=False )(lrelu2) lrelu3 = layers.LeakyReLU()(conv3) conv4 = addon_layers.WeightNormalization( layers.Conv1D(1024, 41, 4, "same", groups=64), data_init=False )(lrelu3) lrelu4 = layers.LeakyReLU()(conv4) conv5 = addon_layers.WeightNormalization( layers.Conv1D(1024, 41, 4, "same", groups=256), data_init=False )(lrelu4) lrelu5 = layers.LeakyReLU()(conv5) conv6 = addon_layers.WeightNormalization( layers.Conv1D(1024, 5, 1, "same"), data_init=False )(lrelu5) lrelu6 = layers.LeakyReLU()(conv6) conv7 = addon_layers.WeightNormalization( layers.Conv1D(1, 3, 1, "same"), data_init=False )(lrelu6) return [lrelu1, lrelu2, lrelu3, lrelu4, lrelu5, lrelu6, conv7]

Create the generator

def create_generator(input_shape): inp = keras.Input(input_shape) x = MelSpec()(inp) x = layers.Conv1D(512, 7, padding="same")(x) x = layers.LeakyReLU()(x) x = conv_block(x, 256, 8) x = conv_block(x, 128, 8) x = conv_block(x, 64, 2) x = conv_block(x, 32, 2) x = addon_layers.WeightNormalization( layers.Conv1D(1, 7, padding="same", activation="tanh") )(x) return keras.Model(inp, x) # We use a dynamic input shape for the generator since the model is fully convolutional generator = create_generator((None, 1)) generator.summary()
``` Model: "model" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, None, 1)] 0 __________________________________________________________________________________________________ mel_spec (MelSpec) (None, None, 80) 0 input_1[0][0] __________________________________________________________________________________________________ conv1d (Conv1D) (None, None, 512) 287232 mel_spec[0][0] __________________________________________________________________________________________________ leaky_re_lu (LeakyReLU) (None, None, 512) 0 conv1d[0][0] __________________________________________________________________________________________________ weight_normalization (WeightNor (None, None, 256) 2097921 leaky_re_lu[0][0] __________________________________________________________________________________________________ leaky_re_lu_1 (LeakyReLU) (None, None, 256) 0 weight_normalization[0][0] __________________________________________________________________________________________________ weight_normalization_1 (WeightN (None, None, 256) 197121 leaky_re_lu_1[0][0] __________________________________________________________________________________________________ leaky_re_lu_2 (LeakyReLU) (None, None, 256) 0 weight_normalization_1[0][0] __________________________________________________________________________________________________ weight_normalization_2 (WeightN (None, None, 256) 197121 leaky_re_lu_2[0][0] __________________________________________________________________________________________________ add (Add) (None, None, 256) 0 weight_normalization_2[0][0] leaky_re_lu_1[0][0] __________________________________________________________________________________________________ leaky_re_lu_3 (LeakyReLU) (None, None, 256) 0 add[0][0] __________________________________________________________________________________________________ weight_normalization_3 (WeightN (None, None, 256) 197121 leaky_re_lu_3[0][0] __________________________________________________________________________________________________ leaky_re_lu_4 (LeakyReLU) (None, None, 256) 0 weight_normalization_3[0][0] __________________________________________________________________________________________________ weight_normalization_4 (WeightN (None, None, 256) 197121 leaky_re_lu_4[0][0] __________________________________________________________________________________________________ add_1 (Add) (None, None, 256) 0 add[0][0] weight_normalization_4[0][0] __________________________________________________________________________________________________ leaky_re_lu_5 (LeakyReLU) (None, None, 256) 0 add_1[0][0] __________________________________________________________________________________________________ weight_normalization_5 (WeightN (None, None, 256) 197121 leaky_re_lu_5[0][0] __________________________________________________________________________________________________ leaky_re_lu_6 (LeakyReLU) (None, None, 256) 0 weight_normalization_5[0][0] __________________________________________________________________________________________________ weight_normalization_6 (WeightN (None, None, 256) 197121 leaky_re_lu_6[0][0] __________________________________________________________________________________________________ add_2 (Add) (None, None, 256) 0 weight_normalization_6[0][0] add_1[0][0] __________________________________________________________________________________________________ leaky_re_lu_7 (LeakyReLU) (None, None, 256) 0 add_2[0][0] __________________________________________________________________________________________________ weight_normalization_7 (WeightN (None, None, 128) 524673 leaky_re_lu_7[0][0] __________________________________________________________________________________________________ leaky_re_lu_8 (LeakyReLU) (None, None, 128) 0 weight_normalization_7[0][0] __________________________________________________________________________________________________ weight_normalization_8 (WeightN (None, None, 128) 49409 leaky_re_lu_8[0][0] __________________________________________________________________________________________________ leaky_re_lu_9 (LeakyReLU) (None, None, 128) 0 weight_normalization_8[0][0] __________________________________________________________________________________________________ weight_normalization_9 (WeightN (None, None, 128) 49409 leaky_re_lu_9[0][0] __________________________________________________________________________________________________ add_3 (Add) (None, None, 128) 0 weight_normalization_9[0][0] leaky_re_lu_8[0][0] __________________________________________________________________________________________________ leaky_re_lu_10 (LeakyReLU) (None, None, 128) 0 add_3[0][0] __________________________________________________________________________________________________ weight_normalization_10 (Weight (None, None, 128) 49409 leaky_re_lu_10[0][0] __________________________________________________________________________________________________ leaky_re_lu_11 (LeakyReLU) (None, None, 128) 0 weight_normalization_10[0][0] __________________________________________________________________________________________________ weight_normalization_11 (Weight (None, None, 128) 49409 leaky_re_lu_11[0][0] __________________________________________________________________________________________________ add_4 (Add) (None, None, 128) 0 add_3[0][0] weight_normalization_11[0][0] __________________________________________________________________________________________________ leaky_re_lu_12 (LeakyReLU) (None, None, 128) 0 add_4[0][0] __________________________________________________________________________________________________ weight_normalization_12 (Weight (None, None, 128) 49409 leaky_re_lu_12[0][0] __________________________________________________________________________________________________ leaky_re_lu_13 (LeakyReLU) (None, None, 128) 0 weight_normalization_12[0][0] __________________________________________________________________________________________________ weight_normalization_13 (Weight (None, None, 128) 49409 leaky_re_lu_13[0][0] __________________________________________________________________________________________________ add_5 (Add) (None, None, 128) 0 weight_normalization_13[0][0] add_4[0][0] __________________________________________________________________________________________________ leaky_re_lu_14 (LeakyReLU) (None, None, 128) 0 add_5[0][0] __________________________________________________________________________________________________ weight_normalization_14 (Weight (None, None, 64) 131265 leaky_re_lu_14[0][0] __________________________________________________________________________________________________ leaky_re_lu_15 (LeakyReLU) (None, None, 64) 0 weight_normalization_14[0][0] __________________________________________________________________________________________________ weight_normalization_15 (Weight (None, None, 64) 12417 leaky_re_lu_15[0][0] __________________________________________________________________________________________________ leaky_re_lu_16 (LeakyReLU) (None, None, 64) 0 weight_normalization_15[0][0] __________________________________________________________________________________________________ weight_normalization_16 (Weight (None, None, 64) 12417 leaky_re_lu_16[0][0] __________________________________________________________________________________________________ add_6 (Add) (None, None, 64) 0 weight_normalization_16[0][0] leaky_re_lu_15[0][0] __________________________________________________________________________________________________ leaky_re_lu_17 (LeakyReLU) (None, None, 64) 0 add_6[0][0] __________________________________________________________________________________________________ weight_normalization_17 (Weight (None, None, 64) 12417 leaky_re_lu_17[0][0] __________________________________________________________________________________________________ leaky_re_lu_18 (LeakyReLU) (None, None, 64) 0 weight_normalization_17[0][0] __________________________________________________________________________________________________ weight_normalization_18 (Weight (None, None, 64) 12417 leaky_re_lu_18[0][0] __________________________________________________________________________________________________ add_7 (Add) (None, None, 64) 0 add_6[0][0] weight_normalization_18[0][0] __________________________________________________________________________________________________ leaky_re_lu_19 (LeakyReLU) (None, None, 64) 0 add_7[0][0] __________________________________________________________________________________________________ weight_normalization_19 (Weight (None, None, 64) 12417 leaky_re_lu_19[0][0] __________________________________________________________________________________________________ leaky_re_lu_20 (LeakyReLU) (None, None, 64) 0 weight_normalization_19[0][0] __________________________________________________________________________________________________ weight_normalization_20 (Weight (None, None, 64) 12417 leaky_re_lu_20[0][0] __________________________________________________________________________________________________ add_8 (Add) (None, None, 64) 0 weight_normalization_20[0][0] add_7[0][0] __________________________________________________________________________________________________ leaky_re_lu_21 (LeakyReLU) (None, None, 64) 0 add_8[0][0] __________________________________________________________________________________________________ weight_normalization_21 (Weight (None, None, 32) 32865 leaky_re_lu_21[0][0] __________________________________________________________________________________________________ leaky_re_lu_22 (LeakyReLU) (None, None, 32) 0 weight_normalization_21[0][0] __________________________________________________________________________________________________ weight_normalization_22 (Weight (None, None, 32) 3137 leaky_re_lu_22[0][0] __________________________________________________________________________________________________ leaky_re_lu_23 (LeakyReLU) (None, None, 32) 0 weight_normalization_22[0][0] __________________________________________________________________________________________________ weight_normalization_23 (Weight (None, None, 32) 3137 leaky_re_lu_23[0][0] __________________________________________________________________________________________________ add_9 (Add) (None, None, 32) 0 weight_normalization_23[0][0] leaky_re_lu_22[0][0] __________________________________________________________________________________________________ leaky_re_lu_24 (LeakyReLU) (None, None, 32) 0 add_9[0][0] __________________________________________________________________________________________________ weight_normalization_24 (Weight (None, None, 32) 3137 leaky_re_lu_24[0][0] __________________________________________________________________________________________________ leaky_re_lu_25 (LeakyReLU) (None, None, 32) 0 weight_normalization_24[0][0] __________________________________________________________________________________________________ weight_normalization_25 (Weight (None, None, 32) 3137 leaky_re_lu_25[0][0] __________________________________________________________________________________________________ add_10 (Add) (None, None, 32) 0 add_9[0][0] weight_normalization_25[0][0] __________________________________________________________________________________________________ leaky_re_lu_26 (LeakyReLU) (None, None, 32) 0 add_10[0][0] __________________________________________________________________________________________________ weight_normalization_26 (Weight (None, None, 32) 3137 leaky_re_lu_26[0][0] __________________________________________________________________________________________________ leaky_re_lu_27 (LeakyReLU) (None, None, 32) 0 weight_normalization_26[0][0] __________________________________________________________________________________________________ weight_normalization_27 (Weight (None, None, 32) 3137 leaky_re_lu_27[0][0] __________________________________________________________________________________________________ add_11 (Add) (None, None, 32) 0 weight_normalization_27[0][0] add_10[0][0] __________________________________________________________________________________________________ leaky_re_lu_28 (LeakyReLU) (None, None, 32) 0 add_11[0][0] __________________________________________________________________________________________________ weight_normalization_28 (Weight (None, None, 1) 452 leaky_re_lu_28[0][0] ================================================================================================== Total params: 4,646,912 Trainable params: 4,646,658 Non-trainable params: 254 __________________________________________________________________________________________________
</div> ### Create the discriminator ```python def create_discriminator(input_shape): inp = keras.Input(input_shape) out_map1 = discriminator_block(inp) pool1 = layers.AveragePooling1D()(inp) out_map2 = discriminator_block(pool1) pool2 = layers.AveragePooling1D()(pool1) out_map3 = discriminator_block(pool2) return keras.Model(inp, [out_map1, out_map2, out_map3]) # We use a dynamic input shape for the discriminator # This is done because the input shape for the generator is unknown discriminator = create_discriminator((None, 1)) discriminator.summary()
``` Model: "model_1" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_2 (InputLayer) [(None, None, 1)] 0 __________________________________________________________________________________________________ average_pooling1d (AveragePooli (None, None, 1) 0 input_2[0][0] __________________________________________________________________________________________________ average_pooling1d_1 (AveragePoo (None, None, 1) 0 average_pooling1d[0][0] __________________________________________________________________________________________________ weight_normalization_29 (Weight (None, None, 16) 273 input_2[0][0] __________________________________________________________________________________________________ weight_normalization_36 (Weight (None, None, 16) 273 average_pooling1d[0][0] __________________________________________________________________________________________________ weight_normalization_43 (Weight (None, None, 16) 273 average_pooling1d_1[0][0] __________________________________________________________________________________________________ leaky_re_lu_29 (LeakyReLU) (None, None, 16) 0 weight_normalization_29[0][0] __________________________________________________________________________________________________ leaky_re_lu_35 (LeakyReLU) (None, None, 16) 0 weight_normalization_36[0][0] __________________________________________________________________________________________________ leaky_re_lu_41 (LeakyReLU) (None, None, 16) 0 weight_normalization_43[0][0] __________________________________________________________________________________________________ weight_normalization_30 (Weight (None, None, 64) 10625 leaky_re_lu_29[0][0] __________________________________________________________________________________________________ weight_normalization_37 (Weight (None, None, 64) 10625 leaky_re_lu_35[0][0] __________________________________________________________________________________________________ weight_normalization_44 (Weight (None, None, 64) 10625 leaky_re_lu_41[0][0] __________________________________________________________________________________________________ leaky_re_lu_30 (LeakyReLU) (None, None, 64) 0 weight_normalization_30[0][0] __________________________________________________________________________________________________ leaky_re_lu_36 (LeakyReLU) (None, None, 64) 0 weight_normalization_37[0][0] __________________________________________________________________________________________________ leaky_re_lu_42 (LeakyReLU) (None, None, 64) 0 weight_normalization_44[0][0] __________________________________________________________________________________________________ weight_normalization_31 (Weight (None, None, 256) 42497 leaky_re_lu_30[0][0] __________________________________________________________________________________________________ weight_normalization_38 (Weight (None, None, 256) 42497 leaky_re_lu_36[0][0] __________________________________________________________________________________________________ weight_normalization_45 (Weight (None, None, 256) 42497 leaky_re_lu_42[0][0] __________________________________________________________________________________________________ leaky_re_lu_31 (LeakyReLU) (None, None, 256) 0 weight_normalization_31[0][0] __________________________________________________________________________________________________ leaky_re_lu_37 (LeakyReLU) (None, None, 256) 0 weight_normalization_38[0][0] __________________________________________________________________________________________________ leaky_re_lu_43 (LeakyReLU) (None, None, 256) 0 weight_normalization_45[0][0] __________________________________________________________________________________________________ weight_normalization_32 (Weight (None, None, 1024) 169985 leaky_re_lu_31[0][0] __________________________________________________________________________________________________ weight_normalization_39 (Weight (None, None, 1024) 169985 leaky_re_lu_37[0][0] __________________________________________________________________________________________________ weight_normalization_46 (Weight (None, None, 1024) 169985 leaky_re_lu_43[0][0] __________________________________________________________________________________________________ leaky_re_lu_32 (LeakyReLU) (None, None, 1024) 0 weight_normalization_32[0][0] __________________________________________________________________________________________________ leaky_re_lu_38 (LeakyReLU) (None, None, 1024) 0 weight_normalization_39[0][0] __________________________________________________________________________________________________ leaky_re_lu_44 (LeakyReLU) (None, None, 1024) 0 weight_normalization_46[0][0] __________________________________________________________________________________________________ weight_normalization_33 (Weight (None, None, 1024) 169985 leaky_re_lu_32[0][0] __________________________________________________________________________________________________ weight_normalization_40 (Weight (None, None, 1024) 169985 leaky_re_lu_38[0][0] __________________________________________________________________________________________________ weight_normalization_47 (Weight (None, None, 1024) 169985 leaky_re_lu_44[0][0] __________________________________________________________________________________________________ leaky_re_lu_33 (LeakyReLU) (None, None, 1024) 0 weight_normalization_33[0][0] __________________________________________________________________________________________________ leaky_re_lu_39 (LeakyReLU) (None, None, 1024) 0 weight_normalization_40[0][0] __________________________________________________________________________________________________ leaky_re_lu_45 (LeakyReLU) (None, None, 1024) 0 weight_normalization_47[0][0] __________________________________________________________________________________________________ weight_normalization_34 (Weight (None, None, 1024) 5244929 leaky_re_lu_33[0][0] __________________________________________________________________________________________________ weight_normalization_41 (Weight (None, None, 1024) 5244929 leaky_re_lu_39[0][0] __________________________________________________________________________________________________ weight_normalization_48 (Weight (None, None, 1024) 5244929 leaky_re_lu_45[0][0] __________________________________________________________________________________________________ leaky_re_lu_34 (LeakyReLU) (None, None, 1024) 0 weight_normalization_34[0][0] __________________________________________________________________________________________________ leaky_re_lu_40 (LeakyReLU) (None, None, 1024) 0 weight_normalization_41[0][0] __________________________________________________________________________________________________ leaky_re_lu_46 (LeakyReLU) (None, None, 1024) 0 weight_normalization_48[0][0] __________________________________________________________________________________________________ weight_normalization_35 (Weight (None, None, 1) 3075 leaky_re_lu_34[0][0] __________________________________________________________________________________________________ weight_normalization_42 (Weight (None, None, 1) 3075 leaky_re_lu_40[0][0] __________________________________________________________________________________________________ weight_normalization_49 (Weight (None, None, 1) 3075 leaky_re_lu_46[0][0] ================================================================================================== Total params: 16,924,107 Trainable params: 16,924,086 Non-trainable params: 21 __________________________________________________________________________________________________
</div> --- ## Defining the loss functions **Generator Loss** The generator architecture uses a combination of two losses 1. Mean Squared Error: This is the standard MSE generator loss calculated between ones and the outputs from the discriminator with _N_ layers. <p align="center"> <img src="https://i.imgur.com/dz4JS3I.png" width=300px;></img> </p> 2. Feature Matching Loss: This loss involves extracting the outputs of every layer from the discriminator for both the generator and ground truth and compare each layer output _k_ using Mean Absolute Error. <p align="center"> <img src="https://i.imgur.com/gEpSBar.png" width=400px;></img> </p> **Discriminator Loss** The discriminator uses the Mean Absolute Error and compares the real data predictions with ones and generated predictions with zeros. <p align="center"> <img src="https://i.imgur.com/bbEnJ3t.png" width=425px;></img> </p> ```python # Generator loss def generator_loss(real_pred, fake_pred): """Loss function for the generator. Args: real_pred: Tensor, output of the ground truth wave passed through the discriminator. fake_pred: Tensor, output of the generator prediction passed through the discriminator. Returns: Loss for the generator. """ gen_loss = [] for i in range(len(fake_pred)): gen_loss.append(mse(tf.ones_like(fake_pred[i][-1]), fake_pred[i][-1])) return tf.reduce_mean(gen_loss) def feature_matching_loss(real_pred, fake_pred): """Implements the feature matching loss. Args: real_pred: Tensor, output of the ground truth wave passed through the discriminator. fake_pred: Tensor, output of the generator prediction passed through the discriminator. Returns: Feature Matching Loss. """ fm_loss = [] for i in range(len(fake_pred)): for j in range(len(fake_pred[i]) - 1): fm_loss.append(mae(real_pred[i][j], fake_pred[i][j])) return tf.reduce_mean(fm_loss) def discriminator_loss(real_pred, fake_pred): """Implements the discriminator loss. Args: real_pred: Tensor, output of the ground truth wave passed through the discriminator. fake_pred: Tensor, output of the generator prediction passed through the discriminator. Returns: Discriminator Loss. """ real_loss, fake_loss = [], [] for i in range(len(real_pred)): real_loss.append(mse(tf.ones_like(real_pred[i][-1]), real_pred[i][-1])) fake_loss.append(mse(tf.zeros_like(fake_pred[i][-1]), fake_pred[i][-1])) # Calculating the final discriminator loss after scaling disc_loss = tf.reduce_mean(real_loss) + tf.reduce_mean(fake_loss) return disc_loss

Defining the MelGAN model for training. This subclass overrides the train_step() method to implement the training logic.

class MelGAN(keras.Model): def __init__(self, generator, discriminator, **kwargs): """MelGAN trainer class Args: generator: keras.Model, Generator model discriminator: keras.Model, Discriminator model """ super().__init__(**kwargs) self.generator = generator self.discriminator = discriminator def compile( self, gen_optimizer, disc_optimizer, generator_loss, feature_matching_loss, discriminator_loss, ): """MelGAN compile method. Args: gen_optimizer: keras.optimizer, optimizer to be used for training disc_optimizer: keras.optimizer, optimizer to be used for training generator_loss: callable, loss function for generator feature_matching_loss: callable, loss function for feature matching discriminator_loss: callable, loss function for discriminator """ super().compile() # Optimizers self.gen_optimizer = gen_optimizer self.disc_optimizer = disc_optimizer # Losses self.generator_loss = generator_loss self.feature_matching_loss = feature_matching_loss self.discriminator_loss = discriminator_loss # Trackers self.gen_loss_tracker = keras.metrics.Mean(name="gen_loss") self.disc_loss_tracker = keras.metrics.Mean(name="disc_loss") def train_step(self, batch): x_batch_train, y_batch_train = batch with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: # Generating the audio wave gen_audio_wave = generator(x_batch_train, training=True) # Generating the features using the discriminator real_pred = discriminator(y_batch_train) fake_pred = discriminator(gen_audio_wave) # Calculating the generator losses gen_loss = generator_loss(real_pred, fake_pred) fm_loss = feature_matching_loss(real_pred, fake_pred) # Calculating final generator loss gen_fm_loss = gen_loss + 10 * fm_loss # Calculating the discriminator losses disc_loss = discriminator_loss(real_pred, fake_pred) # Calculating and applying the gradients for generator and discriminator grads_gen = gen_tape.gradient(gen_fm_loss, generator.trainable_weights) grads_disc = disc_tape.gradient(disc_loss, discriminator.trainable_weights) gen_optimizer.apply_gradients(zip(grads_gen, generator.trainable_weights)) disc_optimizer.apply_gradients(zip(grads_disc, discriminator.trainable_weights)) self.gen_loss_tracker.update_state(gen_fm_loss) self.disc_loss_tracker.update_state(disc_loss) return { "gen_loss": self.gen_loss_tracker.result(), "disc_loss": self.disc_loss_tracker.result(), }

Training

The paper suggests that the training with dynamic shapes takes around 400,000 steps (~500 epochs). For this example, we will run it only for a single epoch (819 steps). Longer training time (greater than 300 epochs) will almost certainly provide better results.

gen_optimizer = keras.optimizers.Adam( LEARNING_RATE_GEN, beta_1=0.5, beta_2=0.9, clipnorm=1 ) disc_optimizer = keras.optimizers.Adam( LEARNING_RATE_DISC, beta_1=0.5, beta_2=0.9, clipnorm=1 ) # Start training generator = create_generator((None, 1)) discriminator = create_discriminator((None, 1)) mel_gan = MelGAN(generator, discriminator) mel_gan.compile( gen_optimizer, disc_optimizer, generator_loss, feature_matching_loss, discriminator_loss, ) mel_gan.fit( train_dataset.shuffle(200).batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE), epochs=1 )
``` 819/819 [==============================] - 641s 696ms/step - gen_loss: 0.9761 - disc_loss: 0.9350

<keras.callbacks.History at 0x7f8f702fe050>

</div> --- ## Testing the model The trained model can now be used for real time text-to-speech translation tasks. To test how fast the MelGAN inference can be, let us take a sample audio mel-spectrogram and convert it. Note that the actual model pipeline will not include the `MelSpec` layer and hence this layer will be disabled during inference. The inference input will be a mel-spectrogram processed similar to the `MelSpec` layer configuration. For testing this, we will create a randomly uniformly distributed tensor to simulate the behavior of the inference pipeline. ```python # Sampling a random tensor to mimic a batch of 128 spectrograms of shape [50, 80] audio_sample = tf.random.uniform([128, 50, 80])

Timing the inference speed of a single sample. Running this, you can see that the average inference time per spectrogram ranges from 8 milliseconds to 10 milliseconds on a K80 GPU which is pretty fast.

pred = generator.predict(audio_sample, batch_size=32, verbose=1)
``` 4/4 [==============================] - 5s 280ms/step
</div> --- ## Conclusion The MelGAN is a highly effective architecture for spectral inversion that has a Mean Opinion Score (MOS) of 3.61 that considerably outperforms the Griffin Lim algorithm having a MOS of just 1.57. In contrast with this, the MelGAN compares with the state-of-the-art WaveGlow and WaveNet architectures on text-to-speech and speech enhancement tasks on the LJSpeech and VCTK datasets <sup>[1]</sup>. This tutorial highlights: 1. The advantages of using dilated convolutions that grow with the filter size 2. Implementation of a custom layer for on-the-fly conversion of audio waves to mel-spectrograms 3. Effectiveness of using the feature matching loss function for training GAN generators. Further reading 1. [MelGAN paper](https://arxiv.org/pdf/1910.06711v3.pdf) (Kundan Kumar et al.) to understand the reasoning behind the architecture and training process 2. For in-depth understanding of the feature matching loss, you can refer to [Improved Techniques for Training GANs](https://arxiv.org/pdf/1606.03498v1.pdf) (Tim Salimans et al.). Example available on HuggingFace | Trained Model | Demo | | :--: | :--: | | [![Generic badge](https://img.shields.io/badge/%F0%9F%A4%97%20Model-MelGan%20spectrogram%20inversion-black.svg)](https://huggingface.co/keras-io/MelGAN-spectrogram-inversion) | [![Generic badge](https://img.shields.io/badge/%F0%9F%A4%97%20Spaces-MelGan%20spectrogram%20inversion-black.svg)](https://huggingface.co/spaces/keras-io/MelGAN-spectrogram-inversion) |