Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
labmlai
GitHub Repository: labmlai/annotated_deep_learning_paper_implementations
Path: blob/master/labml_nn/diffusion/ddpm/experiment.ipynb
4921 views
Kernel: Python 3 (ipykernel)

Github Open In Colab

Denoising Diffusion Probabilistic Models (DDPM)

This notebook trains a DDPM based model on MNIST digits dataset.

Install the packages

!pip install labml-nn --quiet

Imports

from labml import experiment from labml_nn.diffusion.ddpm.experiment import Configs

Create an experiment

experiment.create(name="diffuse", writers={'screen'})

Configurations

configs = Configs()

Set experiment configurations and assign a configurations dictionary to override configurations

experiment.configs(configs, { 'dataset': 'MNIST', 'image_channels': 1, 'epochs': 5, })

Initializ

configs.init()

Set PyTorch models for loading and saving

experiment.add_pytorch_models({'eps_model': configs.eps_model})

Start the experiment and run the training loop.

# Start the experiment with experiment.start(): configs.run()