Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
labmlai
GitHub Repository: labmlai/annotated_deep_learning_paper_implementations
Path: blob/master/labml_nn/gan/wasserstein/experiment.py
4956 views
1
"""
2
---
3
title: WGAN experiment with MNIST
4
summary: This experiment generates MNIST images using convolutional neural network.
5
---
6
7
# WGAN experiment with MNIST
8
"""
9
from labml import experiment
10
11
from labml.configs import calculate
12
# Import configurations from [DCGAN experiment](../dcgan/index.html)
13
from labml_nn.gan.dcgan import Configs
14
15
# Import [Wasserstein GAN losses](./index.html)
16
from labml_nn.gan.wasserstein import GeneratorLoss, DiscriminatorLoss
17
18
# Set configurations options for Wasserstein GAN losses
19
calculate(Configs.generator_loss, 'wasserstein', lambda c: GeneratorLoss())
20
calculate(Configs.discriminator_loss, 'wasserstein', lambda c: DiscriminatorLoss())
21
22
23
def main():
24
# Create configs object
25
conf = Configs()
26
# Create experiment
27
experiment.create(name='mnist_wassertein_dcgan', comment='test')
28
# Override configurations
29
experiment.configs(conf,
30
{
31
'discriminator': 'cnn',
32
'generator': 'cnn',
33
'label_smoothing': 0.01,
34
'generator_loss': 'wasserstein',
35
'discriminator_loss': 'wasserstein',
36
})
37
38
# Start the experiment and run training loop
39
with experiment.start():
40
conf.run()
41
42
43
if __name__ == '__main__':
44
main()
45
46