Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
labmlai
GitHub Repository: labmlai/annotated_deep_learning_paper_implementations
Path: blob/master/labml_nn/helpers/optimizer.py
4918 views
1
from typing import Tuple
2
3
import torch
4
from labml import tracker
5
6
from labml.configs import BaseConfigs, option, meta_config
7
8
9
class OptimizerConfigs(BaseConfigs):
10
r"""
11
This creates a configurable optimizer.
12
13
Arguments:
14
learning_rate (float): Learning rate of the optimizer. Defaults to ``0.01``.
15
momentum (float): Momentum of the optimizer. Defaults to ``0.5``.
16
parameters: Model parameters to optimize.
17
d_model (int): Embedding size of the model (for Noam optimizer).
18
betas (Tuple[float, float]): Betas for Adam optimizer. Defaults to ``(0.9, 0.999)``.
19
eps (float): Epsilon for Adam/RMSProp optimizers. Defaults to ``1e-8``.
20
step_factor (int): Step factor for Noam optimizer. Defaults to ``1024``.
21
22
Also there is a better (more options) implementation in ``labml_nn``.
23
`We recommend using that <https://nn.labml.ai/optimizers/configs.html>`_.
24
"""
25
26
optimizer: torch.optim.Adam
27
learning_rate: float = 0.01
28
momentum: float = 0.5
29
parameters: any
30
d_model: int
31
betas: Tuple[float, float] = (0.9, 0.999)
32
eps: float = 1e-8
33
step_factor: int = 1024
34
35
def __init__(self):
36
super().__init__(_primary='optimizer')
37
38
39
meta_config(OptimizerConfigs.parameters)
40
41
42
@option(OptimizerConfigs.optimizer, 'SGD')
43
def sgd_optimizer(c: OptimizerConfigs):
44
return torch.optim.SGD(c.parameters, c.learning_rate, c.momentum)
45
46
47
@option(OptimizerConfigs.optimizer, 'Adam')
48
def adam_optimizer(c: OptimizerConfigs):
49
return torch.optim.Adam(c.parameters, lr=c.learning_rate,
50
betas=c.betas, eps=c.eps)
51
52
53
class NoamOpt:
54
def __init__(self, model_size: int, learning_rate: float, warmup: int, step_factor: int, optimizer):
55
self.step_factor = step_factor
56
self.optimizer = optimizer
57
self.warmup = warmup
58
self.learning_rate = learning_rate
59
self.model_size = model_size
60
self._rate = 0
61
62
def step(self):
63
rate = self.rate(tracker.get_global_step() / self.step_factor)
64
for p in self.optimizer.param_groups:
65
p['lr'] = rate
66
self._rate = rate
67
self.optimizer.step()
68
69
def rate(self, step):
70
factor = self.model_size ** (-0.5) * min(step ** (-0.5), step * self.warmup ** (-1.5))
71
return self.learning_rate * factor
72
73
def zero_grad(self):
74
self.optimizer.zero_grad()
75
76
77
@option(OptimizerConfigs.optimizer, 'Noam')
78
def noam_optimizer(c: OptimizerConfigs):
79
optimizer = torch.optim.Adam(c.parameters, lr=0.0, betas=c.betas, eps=c.eps)
80
return NoamOpt(c.d_model, 1, 2000, c.step_factor, optimizer)
81
82
83
def _test_noam_optimizer():
84
import matplotlib.pyplot as plt
85
import numpy as np
86
87
opts = [NoamOpt(512, 1, 4000, None),
88
NoamOpt(512, 1, 8000, None),
89
NoamOpt(2048, 1, 2000, None)]
90
plt.plot(np.arange(1, 20000), [[opt.rate(i) for opt in opts] for i in range(1, 20000)])
91
plt.legend(["512:4000", "512:8000", "256:4000"])
92
plt.title("Optimizer")
93
plt.show()
94
95
96
if __name__ == '__main__':
97
_test_noam_optimizer()
98
99