Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
labmlai
GitHub Repository: labmlai/annotated_deep_learning_paper_implementations
Path: blob/master/labml_nn/hypernetworks/experiment.ipynb
4910 views
Kernel: Python 3

Github Open In Colab

HyperLSTM

This is an experiment training Shakespear dataset with HyperLSTM from paper HyperNetworks.

!pip install labml-nn
from labml import experiment from labml_nn.hypernetworks.experiment import Configs
# Create experiment experiment.create(name="hyper_lstm", comment='') # Create configs conf = Configs() # Load configurations experiment.configs(conf, # A dictionary of configurations to override {'tokenizer': 'character', 'text': 'tiny_shakespeare', 'optimizer.learning_rate': 2.5e-4, 'optimizer.optimizer': 'Adam', 'prompt': 'It is', 'prompt_separator': '', 'rnn_model': 'hyper_lstm', 'train_loader': 'shuffled_train_loader', 'valid_loader': 'shuffled_valid_loader', 'seq_len': 512, 'epochs': 128, 'batch_size': 2, 'inner_iterations': 25}) # Set models for saving and loading experiment.add_pytorch_models({'model': conf.model}) conf.init()
# Start the experiment with experiment.start(): # `TrainValidConfigs.run` conf.run()