Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
labmlai
GitHub Repository: labmlai/annotated_deep_learning_paper_implementations
Path: blob/master/translate_cache/rl/ppo/gae.zh.json
4923 views
1
{
2
"<h1>Generalized Advantage Estimation (GAE)</h1>\n<p>This is a <a href=\"https://pytorch.org\">PyTorch</a> implementation of paper <a href=\"https://arxiv.org/abs/1506.02438\">Generalized Advantage Estimation</a>.</p>\n<p>You can find an experiment that uses it <a href=\"experiment.html\">here</a>.</p>\n": "<h1>\u5e7f\u4e49\u4f18\u52bf\u4f30\u8ba1 (GAE)</h1>\n<p>\u8fd9\u662f\u8bba\u6587<a href=\"https://arxiv.org/abs/1506.02438\">\u5e7f\u4e49\u4f18\u52bf\u4f30\u8ba1</a>\u7684 <a href=\"https://pytorch.org\">PyTorch</a> \u5b9e\u73b0\u3002</p>\n<p>\u4f60\u53ef\u4ee5<a href=\"experiment.html\">\u5728\u8fd9\u91cc</a>\u627e\u5230\u4e00\u4e2a\u4f7f\u7528\u5b83\u7684\u5b9e\u9a8c\u3002</p>\n",
3
"<h3>Calculate advantages</h3>\n<span translate=no>_^_0_^_</span><p><span translate=no>_^_1_^_</span> is high bias, low variance, whilst <span translate=no>_^_2_^_</span> is unbiased, high variance.</p>\n<p>We take a weighted average of <span translate=no>_^_3_^_</span> to balance bias and variance. This is called Generalized Advantage Estimation. <span translate=no>_^_4_^_</span> We set <span translate=no>_^_5_^_</span>, this gives clean calculation for <span translate=no>_^_6_^_</span></p>\n<span translate=no>_^_7_^_</span>": "<h3>\u8ba1\u7b97\u4f18\u52bf</h3>\n<span translate=no>_^_0_^_</span><p><span translate=no>_^_1_^_</span>\u662f\u9ad8\u504f\u5dee\uff0c\u4f4e\u65b9\u5dee\uff0c\u800c<span translate=no>_^_2_^_</span>\u65e0\u504f\u5dee\uff0c\u9ad8\u65b9\u5dee\u3002</p>\n<p>\u6211\u4eec\u91c7\u7528\u52a0\u6743\u5e73\u5747\u503c<span translate=no>_^_3_^_</span>\u6765\u5e73\u8861\u504f\u5dee\u548c\u65b9\u5dee\u3002\u8fd9\u79f0\u4e3a\u5e7f\u4e49\u4f18\u52bf\u4f30\u8ba1\u3002<span translate=no>_^_4_^_</span>\u6211\u4eec\u8bbe\u7f6e<span translate=no>_^_5_^_</span>\uff0c\u8fd9\u7ed9\u51fa\u4e86\u5e72\u51c0\u7684\u8ba1\u7b97<span translate=no>_^_6_^_</span></p>\n<span translate=no>_^_7_^_</span>",
4
"<p> </p>\n": "<p> </p>\n",
5
"<p><span translate=no>_^_0_^_</span> </p>\n": "<p><span translate=no>_^_0_^_</span></p>\n",
6
"<p>advantages table </p>\n": "<p>\u4f18\u52bf\u8868</p>\n",
7
"<p>mask if episode completed after step <span translate=no>_^_0_^_</span> </p>\n": "<p>\u5982\u679c\u5267\u96c6\u5728\u6b65\u9aa4\u4e4b\u540e\u5b8c\u6210\uff0c\u8bf7\u63a9\u76d6<span translate=no>_^_0_^_</span></p>\n",
8
"A PyTorch implementation/tutorial of Generalized Advantage Estimation (GAE).": "\u5e7f\u4e49\u4f18\u52bf\u4f30\u8ba1\uff08GAE\uff09\u7684 PyTorch \u5b9e\u73b0/\u6559\u7a0b\u3002",
9
"Generalized Advantage Estimation (GAE)": "\u5e7f\u4e49\u4f18\u52bf\u4f30\u8ba1 (GAE)"
10
}
11