name: "DL_FR"
input: "data"
input_dim:1
input_dim:3
input_dim:61
input_dim:61
################# laye-1
layers {
bottom: "data"
top: "conv1/3x3_s2_1"
name: "conv1/3x3_s2_1"
type: CONVOLUTION
convolution_param {
num_output: 64
kernel_size: 3
stride: 2
}
}
layers {
bottom: "conv1/3x3_s2_1"
top: "conv1/3x3_s2_1"
name: "conv1/relu_3x3"
type: PRELU
prelu_param {
channel_shared: false
}
}
layers {
name: "conv1/norm1"
type: LRN
bottom: "conv1/3x3_s2_1"
top: "conv1/norm1"
lrn_param {
local_size: 3
alpha: 0.0001
beta: 0.75
}
}
#####################layer-2
layers {
bottom: "conv1/norm1"
top: "conv2/3x3_s2_1"
name: "conv2/3x3_s2_1"
type: CONVOLUTION
convolution_param {
num_output: 128
kernel_size: 3
stride: 2
}
}
layers {
bottom: "conv2/3x3_s2_1"
top: "conv2/3x3_s2_1"
name: "conv2/relu_3x3"
type: PRELU
prelu_param {
channel_shared: false
}
}
layers {
name: "conv2/norm1"
type: LRN
bottom: "conv2/3x3_s2_1"
top: "conv2/norm1"
lrn_param {
local_size: 3
alpha: 0.0001
beta: 0.75
}
}
##################################### layer-3
layers {
bottom: "conv2/norm1"
top: "conv3/2x2_s2_1"
name: "conv3/2x2_s2_1"
type: CONVOLUTION
convolution_param {
num_output: 256
kernel_size: 2
stride: 2
}
}
layers {
bottom: "conv3/2x2_s2_1"
top: "conv3/2x2_s2_1"
name: "conv3/relu_2x2_1"
type: PRELU
prelu_param {
channel_shared: false
}
}
layers {
bottom: "conv3/2x2_s2_1"
top: "conv3/2x2_s1_2"
name: "conv3/2x2_s1_2"
type: CONVOLUTION
convolution_param {
num_output: 384
kernel_size: 2
pad: 1
stride: 1
}
}
layers {
bottom: "conv3/2x2_s1_2"
top: "conv3/2x2_s1_2"
name: "conv3/relu_2x2_2"
type: PRELU
prelu_param {
channel_shared: false
}
}
#####################layer-4
layers {
bottom: "conv3/2x2_s1_2"
top: "conv4/2x2_s1_1"
name: "conv4/2x2_s1_1"
type: CONVOLUTION
convolution_param {
num_output: 256
kernel_size: 2
stride: 1
}
}
layers {
bottom: "conv4/2x2_s1_1"
top: "conv4/2x2_s1_1"
name: "conv4/relu_2x2_1"
type: PRELU
prelu_param {
channel_shared: false
}
}
layers {
bottom: "conv4/2x2_s1_1"
top: "conv4/2x2_s1_2"
name: "conv4/2x2_s1_2"
type: CONVOLUTION
convolution_param {
num_output: 128
kernel_size: 2
pad: 1
stride: 1
}
}
layers {
bottom: "conv4/2x2_s1_2"
top: "conv4/2x2_s1_2"
name: "conv4/relu_2x2_2"
type: PRELU
prelu_param {
channel_shared: false
}
}
##############4x4 bin
layers {
name: "pool4_1"
type: POOLING
bottom: "conv4/2x2_s1_2"
top: "pool4_1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
name: "pool4_1_flatten"
type: FLATTEN
bottom: "pool4_1"
top: "pool4_1_flatten"
}
###############2*2 bin
layers {
name: "pool4_2"
type: POOLING
bottom: "conv4/2x2_s1_2"
top: "pool4_2"
pooling_param {
pool: MAX
kernel_size: 4
stride: 4
}
}
layers {
name: "pool4_2_flatten"
type: FLATTEN
bottom: "pool4_2"
top: "pool4_2_flatten"
}
#############1*1 bin
layers {
name: "pool4_3"
type: POOLING
bottom: "conv4/2x2_s1_2"
top: "pool4_3"
pooling_param {
pool: MAX
kernel_size: 8
stride: 8
}
}
layers {
name: "pool4_3_flatten"
type: FLATTEN
bottom: "pool4_3"
top: "pool4_3_flatten"
}
layers {
bottom: "pool4_1_flatten"
bottom: "pool4_2_flatten"
bottom: "pool4_3_flatten"
top: "pool4_spp"
name: "pool4_spp"
type: CONCAT
}
##########################fc-5
layers {
name: "fc5"
type: INNER_PRODUCT
bottom: "pool4_spp"
top: "fc5"
inner_product_param {
num_output: 512
}
}
layers {
name: "relu5"
type: PRELU
bottom: "fc5"
top: "fc5"
prelu_param {
channel_shared: false
}
}
#layers {
# name: "drop5"
# type: DROPOUT
# bottom: "fc5"
# top: "fc5"
# dropout_param {
# dropout_ratio: 0.2
# }
#}
##############fc-6
layers {
name: "fc6"
type: INNER_PRODUCT
bottom: "fc5"
top: "fc6"
inner_product_param {
num_output: 256
}
}
layers {
name: "relu6"
type: PRELU
bottom: "fc6"
top: "fc6"
prelu_param {
channel_shared: false
}
}
#layers {
# name: "drop6"
# type: DROPOUT
# bottom: "fc6"
# top: "fc6"
# dropout_param {
# dropout_ratio: 0.1
# }
#}
#layers {
# name: "fc7_face64"
# type: INNER_PRODUCT
# bottom: "fc6"
# top: "fc7_face64"
# inner_product_param {
# num_output: 2193
# }
#}
#layers {
# name: "accuracy_top1"
# type: ACCURACY
# bottom: "fc7_face64"
# bottom: "label"
# top: "accuracy_top1"
# accuracy_param {
# top_k: 1
# }
# include: { phase: TEST }
#}
#layers {
# name: "loss"
# type: SOFTMAX_LOSS
# bottom: "fc7_face64"
# bottom: "label"
# top: "loss"
#}