Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
nu11secur1ty
GitHub Repository: nu11secur1ty/Kali-Linux
Path: blob/master/ALFA-W1F1/RTL8814AU/os_dep/linux/rhashtable.c
1307 views
1
/*
2
* Resizable, Scalable, Concurrent Hash Table
3
*
4
* Copyright (c) 2015 Herbert Xu <[email protected]>
5
* Copyright (c) 2014-2015 Thomas Graf <[email protected]>
6
* Copyright (c) 2008-2014 Patrick McHardy <[email protected]>
7
*
8
* Code partially derived from nft_hash
9
* Rewritten with rehash code from br_multicast plus single list
10
* pointer as suggested by Josh Triplett
11
*
12
* This program is free software; you can redistribute it and/or modify
13
* it under the terms of the GNU General Public License version 2 as
14
* published by the Free Software Foundation.
15
*/
16
17
#include <linux/atomic.h>
18
#include <linux/kernel.h>
19
#include <linux/init.h>
20
#include <linux/log2.h>
21
#include <linux/sched.h>
22
#include <linux/slab.h>
23
#include <linux/vmalloc.h>
24
#include <linux/mm.h>
25
#include <linux/jhash.h>
26
#include <linux/random.h>
27
#include <linux/err.h>
28
#include <linux/export.h>
29
30
#define HASH_DEFAULT_SIZE 64UL
31
#define HASH_MIN_SIZE 4U
32
#define BUCKET_LOCKS_PER_CPU 128UL
33
34
static u32 head_hashfn(struct rhashtable *ht,
35
const struct bucket_table *tbl,
36
const struct rhash_head *he)
37
{
38
return rht_head_hashfn(ht, tbl, he, ht->p);
39
}
40
41
#ifdef CONFIG_PROVE_LOCKING
42
#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
43
44
int lockdep_rht_mutex_is_held(struct rhashtable *ht)
45
{
46
return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
47
}
48
49
int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
50
{
51
spinlock_t *lock = rht_bucket_lock(tbl, hash);
52
53
return (debug_locks) ? lockdep_is_held(lock) : 1;
54
}
55
#else
56
#define ASSERT_RHT_MUTEX(HT)
57
#endif
58
59
60
static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
61
gfp_t gfp)
62
{
63
unsigned int i, size;
64
#if defined(CONFIG_PROVE_LOCKING)
65
unsigned int nr_pcpus = 2;
66
#else
67
unsigned int nr_pcpus = num_possible_cpus();
68
#endif
69
70
nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
71
size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
72
73
/* Never allocate more than 0.5 locks per bucket */
74
size = min_t(unsigned int, size, tbl->size >> 1);
75
76
if (sizeof(spinlock_t) != 0) {
77
#ifdef CONFIG_NUMA
78
if (size * sizeof(spinlock_t) > PAGE_SIZE &&
79
gfp == GFP_KERNEL)
80
tbl->locks = vmalloc(size * sizeof(spinlock_t));
81
else
82
#endif
83
tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
84
gfp);
85
if (!tbl->locks)
86
return -ENOMEM;
87
for (i = 0; i < size; i++)
88
spin_lock_init(&tbl->locks[i]);
89
}
90
tbl->locks_mask = size - 1;
91
92
return 0;
93
}
94
95
static void bucket_table_free(const struct bucket_table *tbl)
96
{
97
if (tbl)
98
kvfree(tbl->locks);
99
100
kvfree(tbl);
101
}
102
103
static void bucket_table_free_rcu(struct rcu_head *head)
104
{
105
bucket_table_free(container_of(head, struct bucket_table, rcu));
106
}
107
108
static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
109
size_t nbuckets,
110
gfp_t gfp)
111
{
112
struct bucket_table *tbl = NULL;
113
size_t size;
114
int i;
115
116
size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
117
if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
118
gfp != GFP_KERNEL)
119
tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
120
if (tbl == NULL && gfp == GFP_KERNEL)
121
tbl = vzalloc(size);
122
if (tbl == NULL)
123
return NULL;
124
125
tbl->size = nbuckets;
126
127
if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
128
bucket_table_free(tbl);
129
return NULL;
130
}
131
132
INIT_LIST_HEAD(&tbl->walkers);
133
134
get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
135
136
for (i = 0; i < nbuckets; i++)
137
INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
138
139
return tbl;
140
}
141
142
static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
143
struct bucket_table *tbl)
144
{
145
struct bucket_table *new_tbl;
146
147
do {
148
new_tbl = tbl;
149
tbl = rht_dereference_rcu(tbl->future_tbl, ht);
150
} while (tbl);
151
152
return new_tbl;
153
}
154
155
static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
156
{
157
struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
158
struct bucket_table *new_tbl = rhashtable_last_table(ht,
159
rht_dereference_rcu(old_tbl->future_tbl, ht));
160
struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
161
int err = -ENOENT;
162
struct rhash_head *head, *next, *entry;
163
spinlock_t *new_bucket_lock;
164
unsigned int new_hash;
165
166
rht_for_each(entry, old_tbl, old_hash) {
167
err = 0;
168
next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
169
170
if (rht_is_a_nulls(next))
171
break;
172
173
pprev = &entry->next;
174
}
175
176
if (err)
177
goto out;
178
179
new_hash = head_hashfn(ht, new_tbl, entry);
180
181
new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
182
183
spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
184
head = rht_dereference_bucket(new_tbl->buckets[new_hash],
185
new_tbl, new_hash);
186
187
RCU_INIT_POINTER(entry->next, head);
188
189
rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
190
spin_unlock(new_bucket_lock);
191
192
rcu_assign_pointer(*pprev, next);
193
194
out:
195
return err;
196
}
197
198
static void rhashtable_rehash_chain(struct rhashtable *ht,
199
unsigned int old_hash)
200
{
201
struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
202
spinlock_t *old_bucket_lock;
203
204
old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
205
206
spin_lock_bh(old_bucket_lock);
207
while (!rhashtable_rehash_one(ht, old_hash))
208
;
209
old_tbl->rehash++;
210
spin_unlock_bh(old_bucket_lock);
211
}
212
213
static int rhashtable_rehash_attach(struct rhashtable *ht,
214
struct bucket_table *old_tbl,
215
struct bucket_table *new_tbl)
216
{
217
/* Protect future_tbl using the first bucket lock. */
218
spin_lock_bh(old_tbl->locks);
219
220
/* Did somebody beat us to it? */
221
if (rcu_access_pointer(old_tbl->future_tbl)) {
222
spin_unlock_bh(old_tbl->locks);
223
return -EEXIST;
224
}
225
226
/* Make insertions go into the new, empty table right away. Deletions
227
* and lookups will be attempted in both tables until we synchronize.
228
*/
229
rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
230
231
/* Ensure the new table is visible to readers. */
232
smp_wmb();
233
234
spin_unlock_bh(old_tbl->locks);
235
236
return 0;
237
}
238
239
static int rhashtable_rehash_table(struct rhashtable *ht)
240
{
241
struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
242
struct bucket_table *new_tbl;
243
struct rhashtable_walker *walker;
244
unsigned int old_hash;
245
246
new_tbl = rht_dereference(old_tbl->future_tbl, ht);
247
if (!new_tbl)
248
return 0;
249
250
for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
251
rhashtable_rehash_chain(ht, old_hash);
252
253
/* Publish the new table pointer. */
254
rcu_assign_pointer(ht->tbl, new_tbl);
255
256
spin_lock(&ht->lock);
257
list_for_each_entry(walker, &old_tbl->walkers, list)
258
walker->tbl = NULL;
259
spin_unlock(&ht->lock);
260
261
/* Wait for readers. All new readers will see the new
262
* table, and thus no references to the old table will
263
* remain.
264
*/
265
call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
266
267
return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
268
}
269
270
/**
271
* rhashtable_expand - Expand hash table while allowing concurrent lookups
272
* @ht: the hash table to expand
273
*
274
* A secondary bucket array is allocated and the hash entries are migrated.
275
*
276
* This function may only be called in a context where it is safe to call
277
* synchronize_rcu(), e.g. not within a rcu_read_lock() section.
278
*
279
* The caller must ensure that no concurrent resizing occurs by holding
280
* ht->mutex.
281
*
282
* It is valid to have concurrent insertions and deletions protected by per
283
* bucket locks or concurrent RCU protected lookups and traversals.
284
*/
285
static int rhashtable_expand(struct rhashtable *ht)
286
{
287
struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
288
int err;
289
290
ASSERT_RHT_MUTEX(ht);
291
292
old_tbl = rhashtable_last_table(ht, old_tbl);
293
294
new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
295
if (new_tbl == NULL)
296
return -ENOMEM;
297
298
err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
299
if (err)
300
bucket_table_free(new_tbl);
301
302
return err;
303
}
304
305
/**
306
* rhashtable_shrink - Shrink hash table while allowing concurrent lookups
307
* @ht: the hash table to shrink
308
*
309
* This function shrinks the hash table to fit, i.e., the smallest
310
* size would not cause it to expand right away automatically.
311
*
312
* The caller must ensure that no concurrent resizing occurs by holding
313
* ht->mutex.
314
*
315
* The caller must ensure that no concurrent table mutations take place.
316
* It is however valid to have concurrent lookups if they are RCU protected.
317
*
318
* It is valid to have concurrent insertions and deletions protected by per
319
* bucket locks or concurrent RCU protected lookups and traversals.
320
*/
321
static int rhashtable_shrink(struct rhashtable *ht)
322
{
323
struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
324
unsigned int size;
325
int err;
326
327
ASSERT_RHT_MUTEX(ht);
328
329
size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
330
if (size < ht->p.min_size)
331
size = ht->p.min_size;
332
333
if (old_tbl->size <= size)
334
return 0;
335
336
if (rht_dereference(old_tbl->future_tbl, ht))
337
return -EEXIST;
338
339
new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
340
if (new_tbl == NULL)
341
return -ENOMEM;
342
343
err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
344
if (err)
345
bucket_table_free(new_tbl);
346
347
return err;
348
}
349
350
static void rht_deferred_worker(struct work_struct *work)
351
{
352
struct rhashtable *ht;
353
struct bucket_table *tbl;
354
int err = 0;
355
356
ht = container_of(work, struct rhashtable, run_work);
357
mutex_lock(&ht->mutex);
358
359
tbl = rht_dereference(ht->tbl, ht);
360
tbl = rhashtable_last_table(ht, tbl);
361
362
if (rht_grow_above_75(ht, tbl))
363
rhashtable_expand(ht);
364
else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
365
rhashtable_shrink(ht);
366
367
err = rhashtable_rehash_table(ht);
368
369
mutex_unlock(&ht->mutex);
370
371
if (err)
372
schedule_work(&ht->run_work);
373
}
374
375
static bool rhashtable_check_elasticity(struct rhashtable *ht,
376
struct bucket_table *tbl,
377
unsigned int hash)
378
{
379
unsigned int elasticity = ht->elasticity;
380
struct rhash_head *head;
381
382
rht_for_each(head, tbl, hash)
383
if (!--elasticity)
384
return true;
385
386
return false;
387
}
388
389
int rhashtable_insert_rehash(struct rhashtable *ht,
390
struct bucket_table *tbl)
391
{
392
struct bucket_table *old_tbl;
393
struct bucket_table *new_tbl;
394
unsigned int size;
395
int err;
396
397
old_tbl = rht_dereference_rcu(ht->tbl, ht);
398
399
size = tbl->size;
400
401
err = -EBUSY;
402
403
if (rht_grow_above_75(ht, tbl))
404
size *= 2;
405
/* Do not schedule more than one rehash */
406
else if (old_tbl != tbl)
407
goto fail;
408
409
err = -ENOMEM;
410
411
new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
412
if (new_tbl == NULL)
413
goto fail;
414
415
err = rhashtable_rehash_attach(ht, tbl, new_tbl);
416
if (err) {
417
bucket_table_free(new_tbl);
418
if (err == -EEXIST)
419
err = 0;
420
} else
421
schedule_work(&ht->run_work);
422
423
return err;
424
425
fail:
426
/* Do not fail the insert if someone else did a rehash. */
427
if (likely(rcu_dereference_raw(tbl->future_tbl)))
428
return 0;
429
430
/* Schedule async rehash to retry allocation in process context. */
431
if (err == -ENOMEM)
432
schedule_work(&ht->run_work);
433
434
return err;
435
}
436
437
struct bucket_table *rhashtable_insert_slow(struct rhashtable *ht,
438
const void *key,
439
struct rhash_head *obj,
440
struct bucket_table *tbl)
441
{
442
struct rhash_head *head;
443
unsigned int hash;
444
int err;
445
446
tbl = rhashtable_last_table(ht, tbl);
447
hash = head_hashfn(ht, tbl, obj);
448
spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
449
450
err = -EEXIST;
451
if (key && rhashtable_lookup_fast(ht, key, ht->p))
452
goto exit;
453
454
err = -E2BIG;
455
if (unlikely(rht_grow_above_max(ht, tbl)))
456
goto exit;
457
458
err = -EAGAIN;
459
if (rhashtable_check_elasticity(ht, tbl, hash) ||
460
rht_grow_above_100(ht, tbl))
461
goto exit;
462
463
err = 0;
464
465
head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
466
467
RCU_INIT_POINTER(obj->next, head);
468
469
rcu_assign_pointer(tbl->buckets[hash], obj);
470
471
atomic_inc(&ht->nelems);
472
473
exit:
474
spin_unlock(rht_bucket_lock(tbl, hash));
475
476
if (err == 0)
477
return NULL;
478
else if (err == -EAGAIN)
479
return tbl;
480
else
481
return ERR_PTR(err);
482
}
483
484
/**
485
* rhashtable_walk_init - Initialise an iterator
486
* @ht: Table to walk over
487
* @iter: Hash table Iterator
488
*
489
* This function prepares a hash table walk.
490
*
491
* Note that if you restart a walk after rhashtable_walk_stop you
492
* may see the same object twice. Also, you may miss objects if
493
* there are removals in between rhashtable_walk_stop and the next
494
* call to rhashtable_walk_start.
495
*
496
* For a completely stable walk you should construct your own data
497
* structure outside the hash table.
498
*
499
* This function may sleep so you must not call it from interrupt
500
* context or with spin locks held.
501
*
502
* You must call rhashtable_walk_exit if this function returns
503
* successfully.
504
*/
505
int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
506
{
507
iter->ht = ht;
508
iter->p = NULL;
509
iter->slot = 0;
510
iter->skip = 0;
511
512
iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
513
if (!iter->walker)
514
return -ENOMEM;
515
516
spin_lock(&ht->lock);
517
iter->walker->tbl =
518
rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
519
list_add(&iter->walker->list, &iter->walker->tbl->walkers);
520
spin_unlock(&ht->lock);
521
522
return 0;
523
}
524
525
/**
526
* rhashtable_walk_exit - Free an iterator
527
* @iter: Hash table Iterator
528
*
529
* This function frees resources allocated by rhashtable_walk_init.
530
*/
531
void rhashtable_walk_exit(struct rhashtable_iter *iter)
532
{
533
spin_lock(&iter->ht->lock);
534
if (iter->walker->tbl)
535
list_del(&iter->walker->list);
536
spin_unlock(&iter->ht->lock);
537
kfree(iter->walker);
538
}
539
540
/**
541
* rhashtable_walk_start - Start a hash table walk
542
* @iter: Hash table iterator
543
*
544
* Start a hash table walk. Note that we take the RCU lock in all
545
* cases including when we return an error. So you must always call
546
* rhashtable_walk_stop to clean up.
547
*
548
* Returns zero if successful.
549
*
550
* Returns -EAGAIN if resize event occured. Note that the iterator
551
* will rewind back to the beginning and you may use it immediately
552
* by calling rhashtable_walk_next.
553
*/
554
int rhashtable_walk_start(struct rhashtable_iter *iter)
555
__acquires(RCU)
556
{
557
struct rhashtable *ht = iter->ht;
558
559
rcu_read_lock();
560
561
spin_lock(&ht->lock);
562
if (iter->walker->tbl)
563
list_del(&iter->walker->list);
564
spin_unlock(&ht->lock);
565
566
if (!iter->walker->tbl) {
567
iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
568
return -EAGAIN;
569
}
570
571
return 0;
572
}
573
574
/**
575
* rhashtable_walk_next - Return the next object and advance the iterator
576
* @iter: Hash table iterator
577
*
578
* Note that you must call rhashtable_walk_stop when you are finished
579
* with the walk.
580
*
581
* Returns the next object or NULL when the end of the table is reached.
582
*
583
* Returns -EAGAIN if resize event occured. Note that the iterator
584
* will rewind back to the beginning and you may continue to use it.
585
*/
586
void *rhashtable_walk_next(struct rhashtable_iter *iter)
587
{
588
struct bucket_table *tbl = iter->walker->tbl;
589
struct rhashtable *ht = iter->ht;
590
struct rhash_head *p = iter->p;
591
592
if (p) {
593
p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
594
goto next;
595
}
596
597
for (; iter->slot < tbl->size; iter->slot++) {
598
int skip = iter->skip;
599
600
rht_for_each_rcu(p, tbl, iter->slot) {
601
if (!skip)
602
break;
603
skip--;
604
}
605
606
next:
607
if (!rht_is_a_nulls(p)) {
608
iter->skip++;
609
iter->p = p;
610
return rht_obj(ht, p);
611
}
612
613
iter->skip = 0;
614
}
615
616
iter->p = NULL;
617
618
/* Ensure we see any new tables. */
619
smp_rmb();
620
621
iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
622
if (iter->walker->tbl) {
623
iter->slot = 0;
624
iter->skip = 0;
625
return ERR_PTR(-EAGAIN);
626
}
627
628
return NULL;
629
}
630
631
/**
632
* rhashtable_walk_stop - Finish a hash table walk
633
* @iter: Hash table iterator
634
*
635
* Finish a hash table walk.
636
*/
637
void rhashtable_walk_stop(struct rhashtable_iter *iter)
638
__releases(RCU)
639
{
640
struct rhashtable *ht;
641
struct bucket_table *tbl = iter->walker->tbl;
642
643
if (!tbl)
644
goto out;
645
646
ht = iter->ht;
647
648
spin_lock(&ht->lock);
649
if (tbl->rehash < tbl->size)
650
list_add(&iter->walker->list, &tbl->walkers);
651
else
652
iter->walker->tbl = NULL;
653
spin_unlock(&ht->lock);
654
655
iter->p = NULL;
656
657
out:
658
rcu_read_unlock();
659
}
660
661
static size_t rounded_hashtable_size(const struct rhashtable_params *params)
662
{
663
return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
664
(unsigned long)params->min_size);
665
}
666
667
static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
668
{
669
return jhash2(key, length, seed);
670
}
671
672
/**
673
* rhashtable_init - initialize a new hash table
674
* @ht: hash table to be initialized
675
* @params: configuration parameters
676
*
677
* Initializes a new hash table based on the provided configuration
678
* parameters. A table can be configured either with a variable or
679
* fixed length key:
680
*
681
* Configuration Example 1: Fixed length keys
682
* struct test_obj {
683
* int key;
684
* void * my_member;
685
* struct rhash_head node;
686
* };
687
*
688
* struct rhashtable_params params = {
689
* .head_offset = offsetof(struct test_obj, node),
690
* .key_offset = offsetof(struct test_obj, key),
691
* .key_len = sizeof(int),
692
* .hashfn = jhash,
693
* .nulls_base = (1U << RHT_BASE_SHIFT),
694
* };
695
*
696
* Configuration Example 2: Variable length keys
697
* struct test_obj {
698
* [...]
699
* struct rhash_head node;
700
* };
701
*
702
* u32 my_hash_fn(const void *data, u32 len, u32 seed)
703
* {
704
* struct test_obj *obj = data;
705
*
706
* return [... hash ...];
707
* }
708
*
709
* struct rhashtable_params params = {
710
* .head_offset = offsetof(struct test_obj, node),
711
* .hashfn = jhash,
712
* .obj_hashfn = my_hash_fn,
713
* };
714
*/
715
int rhashtable_init(struct rhashtable *ht,
716
const struct rhashtable_params *params)
717
{
718
struct bucket_table *tbl;
719
size_t size;
720
721
size = HASH_DEFAULT_SIZE;
722
723
if ((!params->key_len && !params->obj_hashfn) ||
724
(params->obj_hashfn && !params->obj_cmpfn))
725
return -EINVAL;
726
727
if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
728
return -EINVAL;
729
730
memset(ht, 0, sizeof(*ht));
731
mutex_init(&ht->mutex);
732
spin_lock_init(&ht->lock);
733
memcpy(&ht->p, params, sizeof(*params));
734
735
if (params->min_size)
736
ht->p.min_size = roundup_pow_of_two(params->min_size);
737
738
if (params->max_size)
739
ht->p.max_size = rounddown_pow_of_two(params->max_size);
740
741
if (params->insecure_max_entries)
742
ht->p.insecure_max_entries =
743
rounddown_pow_of_two(params->insecure_max_entries);
744
else
745
ht->p.insecure_max_entries = ht->p.max_size * 2;
746
747
ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
748
749
if (params->nelem_hint)
750
size = rounded_hashtable_size(&ht->p);
751
752
/* The maximum (not average) chain length grows with the
753
* size of the hash table, at a rate of (log N)/(log log N).
754
* The value of 16 is selected so that even if the hash
755
* table grew to 2^32 you would not expect the maximum
756
* chain length to exceed it unless we are under attack
757
* (or extremely unlucky).
758
*
759
* As this limit is only to detect attacks, we don't need
760
* to set it to a lower value as you'd need the chain
761
* length to vastly exceed 16 to have any real effect
762
* on the system.
763
*/
764
if (!params->insecure_elasticity)
765
ht->elasticity = 16;
766
767
if (params->locks_mul)
768
ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
769
else
770
ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
771
772
ht->key_len = ht->p.key_len;
773
if (!params->hashfn) {
774
ht->p.hashfn = jhash;
775
776
if (!(ht->key_len & (sizeof(u32) - 1))) {
777
ht->key_len /= sizeof(u32);
778
ht->p.hashfn = rhashtable_jhash2;
779
}
780
}
781
782
tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
783
if (tbl == NULL)
784
return -ENOMEM;
785
786
atomic_set(&ht->nelems, 0);
787
788
RCU_INIT_POINTER(ht->tbl, tbl);
789
790
INIT_WORK(&ht->run_work, rht_deferred_worker);
791
792
return 0;
793
}
794
795
/**
796
* rhashtable_free_and_destroy - free elements and destroy hash table
797
* @ht: the hash table to destroy
798
* @free_fn: callback to release resources of element
799
* @arg: pointer passed to free_fn
800
*
801
* Stops an eventual async resize. If defined, invokes free_fn for each
802
* element to releasal resources. Please note that RCU protected
803
* readers may still be accessing the elements. Releasing of resources
804
* must occur in a compatible manner. Then frees the bucket array.
805
*
806
* This function will eventually sleep to wait for an async resize
807
* to complete. The caller is responsible that no further write operations
808
* occurs in parallel.
809
*/
810
void rhashtable_free_and_destroy(struct rhashtable *ht,
811
void (*free_fn)(void *ptr, void *arg),
812
void *arg)
813
{
814
const struct bucket_table *tbl;
815
unsigned int i;
816
817
cancel_work_sync(&ht->run_work);
818
819
mutex_lock(&ht->mutex);
820
tbl = rht_dereference(ht->tbl, ht);
821
if (free_fn) {
822
for (i = 0; i < tbl->size; i++) {
823
struct rhash_head *pos, *next;
824
825
for (pos = rht_dereference(tbl->buckets[i], ht),
826
next = !rht_is_a_nulls(pos) ?
827
rht_dereference(pos->next, ht) : NULL;
828
!rht_is_a_nulls(pos);
829
pos = next,
830
next = !rht_is_a_nulls(pos) ?
831
rht_dereference(pos->next, ht) : NULL)
832
free_fn(rht_obj(ht, pos), arg);
833
}
834
}
835
836
bucket_table_free(tbl);
837
mutex_unlock(&ht->mutex);
838
}
839
840
void rhashtable_destroy(struct rhashtable *ht)
841
{
842
return rhashtable_free_and_destroy(ht, NULL, NULL);
843
}
844
845
846