Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
official-stockfish
GitHub Repository: official-stockfish/Stockfish
Path: blob/master/src/bitboard.cpp
376 views
1
/*
2
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3
Copyright (C) 2004-2025 The Stockfish developers (see AUTHORS file)
4
5
Stockfish is free software: you can redistribute it and/or modify
6
it under the terms of the GNU General Public License as published by
7
the Free Software Foundation, either version 3 of the License, or
8
(at your option) any later version.
9
10
Stockfish is distributed in the hope that it will be useful,
11
but WITHOUT ANY WARRANTY; without even the implied warranty of
12
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
GNU General Public License for more details.
14
15
You should have received a copy of the GNU General Public License
16
along with this program. If not, see <http://www.gnu.org/licenses/>.
17
*/
18
19
#include "bitboard.h"
20
21
#include <algorithm>
22
#include <bitset>
23
#include <initializer_list>
24
25
#include "misc.h"
26
27
namespace Stockfish {
28
29
uint8_t PopCnt16[1 << 16];
30
uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];
31
32
Bitboard LineBB[SQUARE_NB][SQUARE_NB];
33
Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
34
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
35
36
alignas(64) Magic Magics[SQUARE_NB][2];
37
38
namespace {
39
40
Bitboard RookTable[0x19000]; // To store rook attacks
41
Bitboard BishopTable[0x1480]; // To store bishop attacks
42
43
void init_magics(PieceType pt, Bitboard table[], Magic magics[][2]);
44
45
// Returns the bitboard of target square for the given step
46
// from the given square. If the step is off the board, returns empty bitboard.
47
Bitboard safe_destination(Square s, int step) {
48
Square to = Square(s + step);
49
return is_ok(to) && distance(s, to) <= 2 ? square_bb(to) : Bitboard(0);
50
}
51
}
52
53
// Returns an ASCII representation of a bitboard suitable
54
// to be printed to standard output. Useful for debugging.
55
std::string Bitboards::pretty(Bitboard b) {
56
57
std::string s = "+---+---+---+---+---+---+---+---+\n";
58
59
for (Rank r = RANK_8; r >= RANK_1; --r)
60
{
61
for (File f = FILE_A; f <= FILE_H; ++f)
62
s += b & make_square(f, r) ? "| X " : "| ";
63
64
s += "| " + std::to_string(1 + r) + "\n+---+---+---+---+---+---+---+---+\n";
65
}
66
s += " a b c d e f g h\n";
67
68
return s;
69
}
70
71
72
// Initializes various bitboard tables. It is called at
73
// startup and relies on global objects to be already zero-initialized.
74
void Bitboards::init() {
75
76
for (unsigned i = 0; i < (1 << 16); ++i)
77
PopCnt16[i] = uint8_t(std::bitset<16>(i).count());
78
79
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
80
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
81
SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
82
83
init_magics(ROOK, RookTable, Magics);
84
init_magics(BISHOP, BishopTable, Magics);
85
86
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
87
{
88
PseudoAttacks[WHITE][s1] = pawn_attacks_bb<WHITE>(square_bb(s1));
89
PseudoAttacks[BLACK][s1] = pawn_attacks_bb<BLACK>(square_bb(s1));
90
91
for (int step : {-9, -8, -7, -1, 1, 7, 8, 9})
92
PseudoAttacks[KING][s1] |= safe_destination(s1, step);
93
94
for (int step : {-17, -15, -10, -6, 6, 10, 15, 17})
95
PseudoAttacks[KNIGHT][s1] |= safe_destination(s1, step);
96
97
PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
98
PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ROOK][s1] = attacks_bb<ROOK>(s1, 0);
99
100
for (PieceType pt : {BISHOP, ROOK})
101
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
102
{
103
if (PseudoAttacks[pt][s1] & s2)
104
{
105
LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
106
BetweenBB[s1][s2] =
107
(attacks_bb(pt, s1, square_bb(s2)) & attacks_bb(pt, s2, square_bb(s1)));
108
}
109
BetweenBB[s1][s2] |= s2;
110
}
111
}
112
}
113
114
namespace {
115
116
Bitboard sliding_attack(PieceType pt, Square sq, Bitboard occupied) {
117
118
Bitboard attacks = 0;
119
Direction RookDirections[4] = {NORTH, SOUTH, EAST, WEST};
120
Direction BishopDirections[4] = {NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST};
121
122
for (Direction d : (pt == ROOK ? RookDirections : BishopDirections))
123
{
124
Square s = sq;
125
while (safe_destination(s, d))
126
{
127
attacks |= (s += d);
128
if (occupied & s)
129
{
130
break;
131
}
132
}
133
}
134
135
return attacks;
136
}
137
138
139
// Computes all rook and bishop attacks at startup. Magic
140
// bitboards are used to look up attacks of sliding pieces. As a reference see
141
// https://www.chessprogramming.org/Magic_Bitboards. In particular, here we use
142
// the so called "fancy" approach.
143
void init_magics(PieceType pt, Bitboard table[], Magic magics[][2]) {
144
145
#ifndef USE_PEXT
146
// Optimal PRNG seeds to pick the correct magics in the shortest time
147
int seeds[][RANK_NB] = {{8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020},
148
{728, 10316, 55013, 32803, 12281, 15100, 16645, 255}};
149
150
Bitboard occupancy[4096];
151
int epoch[4096] = {}, cnt = 0;
152
#endif
153
Bitboard reference[4096];
154
int size = 0;
155
156
for (Square s = SQ_A1; s <= SQ_H8; ++s)
157
{
158
// Board edges are not considered in the relevant occupancies
159
Bitboard edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
160
161
// Given a square 's', the mask is the bitboard of sliding attacks from
162
// 's' computed on an empty board. The index must be big enough to contain
163
// all the attacks for each possible subset of the mask and so is 2 power
164
// the number of 1s of the mask. Hence we deduce the size of the shift to
165
// apply to the 64 or 32 bits word to get the index.
166
Magic& m = magics[s][pt - BISHOP];
167
m.mask = sliding_attack(pt, s, 0) & ~edges;
168
#ifndef USE_PEXT
169
m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);
170
#endif
171
// Set the offset for the attacks table of the square. We have individual
172
// table sizes for each square with "Fancy Magic Bitboards".
173
m.attacks = s == SQ_A1 ? table : magics[s - 1][pt - BISHOP].attacks + size;
174
size = 0;
175
176
// Use Carry-Rippler trick to enumerate all subsets of masks[s] and
177
// store the corresponding sliding attack bitboard in reference[].
178
Bitboard b = 0;
179
do
180
{
181
#ifndef USE_PEXT
182
occupancy[size] = b;
183
#endif
184
reference[size] = sliding_attack(pt, s, b);
185
186
if (HasPext)
187
m.attacks[pext(b, m.mask)] = reference[size];
188
189
size++;
190
b = (b - m.mask) & m.mask;
191
} while (b);
192
193
#ifndef USE_PEXT
194
PRNG rng(seeds[Is64Bit][rank_of(s)]);
195
196
// Find a magic for square 's' picking up an (almost) random number
197
// until we find the one that passes the verification test.
198
for (int i = 0; i < size;)
199
{
200
for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6;)
201
m.magic = rng.sparse_rand<Bitboard>();
202
203
// A good magic must map every possible occupancy to an index that
204
// looks up the correct sliding attack in the attacks[s] database.
205
// Note that we build up the database for square 's' as a side
206
// effect of verifying the magic. Keep track of the attempt count
207
// and save it in epoch[], little speed-up trick to avoid resetting
208
// m.attacks[] after every failed attempt.
209
for (++cnt, i = 0; i < size; ++i)
210
{
211
unsigned idx = m.index(occupancy[i]);
212
213
if (epoch[idx] < cnt)
214
{
215
epoch[idx] = cnt;
216
m.attacks[idx] = reference[i];
217
}
218
else if (m.attacks[idx] != reference[i])
219
break;
220
}
221
}
222
#endif
223
}
224
}
225
}
226
227
} // namespace Stockfish
228
229