#ifndef BITBOARD_H_INCLUDED
#define BITBOARD_H_INCLUDED
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring>
#include <cstdint>
#include <cstdlib>
#include <string>
#include "types.h"
namespace Stockfish {
namespace Bitboards {
void init();
std::string pretty(Bitboard b);
}
constexpr Bitboard FileABB = 0x0101010101010101ULL;
constexpr Bitboard FileBBB = FileABB << 1;
constexpr Bitboard FileCBB = FileABB << 2;
constexpr Bitboard FileDBB = FileABB << 3;
constexpr Bitboard FileEBB = FileABB << 4;
constexpr Bitboard FileFBB = FileABB << 5;
constexpr Bitboard FileGBB = FileABB << 6;
constexpr Bitboard FileHBB = FileABB << 7;
constexpr Bitboard Rank1BB = 0xFF;
constexpr Bitboard Rank2BB = Rank1BB << (8 * 1);
constexpr Bitboard Rank3BB = Rank1BB << (8 * 2);
constexpr Bitboard Rank4BB = Rank1BB << (8 * 3);
constexpr Bitboard Rank5BB = Rank1BB << (8 * 4);
constexpr Bitboard Rank6BB = Rank1BB << (8 * 5);
constexpr Bitboard Rank7BB = Rank1BB << (8 * 6);
constexpr Bitboard Rank8BB = Rank1BB << (8 * 7);
extern uint8_t PopCnt16[1 << 16];
extern uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];
extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
struct Magic {
Bitboard mask;
Bitboard* attacks;
#ifndef USE_PEXT
Bitboard magic;
unsigned shift;
#endif
unsigned index(Bitboard occupied) const {
#ifdef USE_PEXT
return unsigned(pext(occupied, mask));
#else
if (Is64Bit)
return unsigned(((occupied & mask) * magic) >> shift);
unsigned lo = unsigned(occupied) & unsigned(mask);
unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32);
return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift;
#endif
}
Bitboard attacks_bb(Bitboard occupied) const { return attacks[index(occupied)]; }
};
extern Magic Magics[SQUARE_NB][2];
constexpr Bitboard square_bb(Square s) {
assert(is_ok(s));
return (1ULL << s);
}
constexpr Bitboard operator&(Bitboard b, Square s) { return b & square_bb(s); }
constexpr Bitboard operator|(Bitboard b, Square s) { return b | square_bb(s); }
constexpr Bitboard operator^(Bitboard b, Square s) { return b ^ square_bb(s); }
constexpr Bitboard& operator|=(Bitboard& b, Square s) { return b |= square_bb(s); }
constexpr Bitboard& operator^=(Bitboard& b, Square s) { return b ^= square_bb(s); }
constexpr Bitboard operator&(Square s, Bitboard b) { return b & s; }
constexpr Bitboard operator|(Square s, Bitboard b) { return b | s; }
constexpr Bitboard operator^(Square s, Bitboard b) { return b ^ s; }
constexpr Bitboard operator|(Square s1, Square s2) { return square_bb(s1) | s2; }
constexpr bool more_than_one(Bitboard b) { return b & (b - 1); }
constexpr Bitboard rank_bb(Rank r) { return Rank1BB << (8 * r); }
constexpr Bitboard rank_bb(Square s) { return rank_bb(rank_of(s)); }
constexpr Bitboard file_bb(File f) { return FileABB << f; }
constexpr Bitboard file_bb(Square s) { return file_bb(file_of(s)); }
template<Direction D>
constexpr Bitboard shift(Bitboard b) {
return D == NORTH ? b << 8
: D == SOUTH ? b >> 8
: D == NORTH + NORTH ? b << 16
: D == SOUTH + SOUTH ? b >> 16
: D == EAST ? (b & ~FileHBB) << 1
: D == WEST ? (b & ~FileABB) >> 1
: D == NORTH_EAST ? (b & ~FileHBB) << 9
: D == NORTH_WEST ? (b & ~FileABB) << 7
: D == SOUTH_EAST ? (b & ~FileHBB) >> 7
: D == SOUTH_WEST ? (b & ~FileABB) >> 9
: 0;
}
template<Color C>
constexpr Bitboard pawn_attacks_bb(Bitboard b) {
return C == WHITE ? shift<NORTH_WEST>(b) | shift<NORTH_EAST>(b)
: shift<SOUTH_WEST>(b) | shift<SOUTH_EAST>(b);
}
inline Bitboard line_bb(Square s1, Square s2) {
assert(is_ok(s1) && is_ok(s2));
return LineBB[s1][s2];
}
inline Bitboard between_bb(Square s1, Square s2) {
assert(is_ok(s1) && is_ok(s2));
return BetweenBB[s1][s2];
}
template<typename T1 = Square>
inline int distance(Square x, Square y);
template<>
inline int distance<File>(Square x, Square y) {
return std::abs(file_of(x) - file_of(y));
}
template<>
inline int distance<Rank>(Square x, Square y) {
return std::abs(rank_of(x) - rank_of(y));
}
template<>
inline int distance<Square>(Square x, Square y) {
return SquareDistance[x][y];
}
inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); }
template<PieceType Pt>
inline Bitboard attacks_bb(Square s, Color c = COLOR_NB) {
assert((Pt != PAWN || c < COLOR_NB) && (is_ok(s)));
return Pt == PAWN ? PseudoAttacks[c][s] : PseudoAttacks[Pt][s];
}
template<PieceType Pt>
inline Bitboard attacks_bb(Square s, Bitboard occupied) {
assert((Pt != PAWN) && (is_ok(s)));
switch (Pt)
{
case BISHOP :
case ROOK :
return Magics[s][Pt - BISHOP].attacks_bb(occupied);
case QUEEN :
return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
default :
return PseudoAttacks[Pt][s];
}
}
inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) {
assert((pt != PAWN) && (is_ok(s)));
switch (pt)
{
case BISHOP :
return attacks_bb<BISHOP>(s, occupied);
case ROOK :
return attacks_bb<ROOK>(s, occupied);
case QUEEN :
return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
default :
return PseudoAttacks[pt][s];
}
}
inline int popcount(Bitboard b) {
#ifndef USE_POPCNT
std::uint16_t indices[4];
std::memcpy(indices, &b, sizeof(b));
return PopCnt16[indices[0]] + PopCnt16[indices[1]] + PopCnt16[indices[2]]
+ PopCnt16[indices[3]];
#elif defined(_MSC_VER)
return int(_mm_popcnt_u64(b));
#else
return __builtin_popcountll(b);
#endif
}
inline Square lsb(Bitboard b) {
assert(b);
#if defined(__GNUC__)
return Square(__builtin_ctzll(b));
#elif defined(_MSC_VER)
#ifdef _WIN64
unsigned long idx;
_BitScanForward64(&idx, b);
return Square(idx);
#else
unsigned long idx;
if (b & 0xffffffff)
{
_BitScanForward(&idx, int32_t(b));
return Square(idx);
}
else
{
_BitScanForward(&idx, int32_t(b >> 32));
return Square(idx + 32);
}
#endif
#else
#error "Compiler not supported."
#endif
}
inline Square msb(Bitboard b) {
assert(b);
#if defined(__GNUC__)
return Square(63 ^ __builtin_clzll(b));
#elif defined(_MSC_VER)
#ifdef _WIN64
unsigned long idx;
_BitScanReverse64(&idx, b);
return Square(idx);
#else
unsigned long idx;
if (b >> 32)
{
_BitScanReverse(&idx, int32_t(b >> 32));
return Square(idx + 32);
}
else
{
_BitScanReverse(&idx, int32_t(b));
return Square(idx);
}
#endif
#else
#error "Compiler not supported."
#endif
}
inline Bitboard least_significant_square_bb(Bitboard b) {
assert(b);
return b & -b;
}
inline Square pop_lsb(Bitboard& b) {
assert(b);
const Square s = lsb(b);
b &= b - 1;
return s;
}
}
#endif