Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
packtpublishing
GitHub Repository: packtpublishing/machine-learning-for-algorithmic-trading-second-edition
Path: blob/master/06_machine_learning_process/04_cross_validation.py
2923 views
1
#!/usr/bin/env python
2
# -*- coding: utf-8 -*-
3
__author__ = 'Stefan Jansen'
4
5
from sklearn.model_selection import (train_test_split,
6
KFold,
7
LeaveOneOut,
8
LeavePOut,
9
ShuffleSplit,
10
TimeSeriesSplit)
11
12
data = list(range(1, 11))
13
print(data)
14
15
print(train_test_split(data, train_size=.8))
16
17
kf = KFold(n_splits=5)
18
for train, validate in kf.split(data):
19
print(train, validate)
20
21
kf = KFold(n_splits=5, shuffle=True, random_state=42)
22
for train, validate in kf.split(data):
23
print(train, validate)
24
25
loo = LeaveOneOut()
26
for train, validate in loo.split(data):
27
print(train, validate)
28
29
lpo = LeavePOut(p=2)
30
for train, validate in lpo.split(data):
31
print(train, validate)
32
33
ss = ShuffleSplit(n_splits=3, test_size=2, random_state=0)
34
for train, validate in ss.split(data):
35
print(train, validate)
36
37
tscv = TimeSeriesSplit(n_splits=5)
38
for train, validate in tscv.split(data):
39
print(train, validate)
40
41