Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
packtpublishing
GitHub Repository: packtpublishing/machine-learning-for-algorithmic-trading-second-edition
Path: tree/master/figures/Chapter_12
2923 views
Name
Size
Last Modified
Figure 12.1 - AdaBoost cross-validation performance.png188.3 KB
Figure 12.10 - Average and cumulative returns by factor quantile.png201.3 KB
Figure 12.11 - Rolling IC for 1-day and 21-day return forecasts.png183.2 KB
Figure 12.12 - LightGBM feature importance.png102.7 KB
Figure 12.13 - Partial dependence plots for scikit-learn GradientBoostingClassifier.png369.1 KB
Figure 12.14 - Partial dependence as a 3D plot.png1.1 MB
Figure 12.15 - SHAP summary plots.png92.8 KB
Figure 12.16 - SHAP force plot.png22.8 KB
Figure 12.17 - SHAP clustered force plot.png67.9 KB
Figure 12.18 - SHAP interaction plot.png24.2 KB
Figure 12.19 - Strategy performance—cumulative returns and rolling Sharpe ratio.png249.9 KB
Figure 12.2 - The gradient boosting algorithm.png46 KB
Figure 12.20 - Information coefficient for high-frequency features.png92 KB
Figure 12.21 - Average 1-min returns and cumulative returns by decile.png219 KB
Figure 12.3 - Cross-validation performance of the scikit-learn gradient boosting classifier.png179.2 KB
Figure 12.4 - Hyperparameter impact for the scikit-learn gradient boosting model.png250.2 KB
Figure 12.5 - Impact of the gradient boosting model hyperparameter settings on test performance.png261.9 KB
Figure 12.6 - Depth-wise vs leaf-wise growth.png20.9 KB
Figure 12.7 - Predictive performance and runtimes of the various gradient boosting models.png74.7 KB
Figure 12.8 - Overall and daily IC for the LightGBM and CatBoost models over three prediction horizons.png98.7 KB
Figure 12.9 - Coefficient estimates and their confidence intervals for different forecast horizons.png183.6 KB