Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
pola-rs
GitHub Repository: pola-rs/polars
Path: blob/main/crates/polars-io/src/ipc/ipc_file.rs
6939 views
1
//! # (De)serializing Arrows IPC format.
2
//!
3
//! Arrow IPC is a [binary format](https://arrow.apache.org/docs/python/ipc.html).
4
//! It is the recommended way to serialize and deserialize Polars DataFrames as this is most true
5
//! to the data schema.
6
//!
7
//! ## Example
8
//!
9
//! ```rust
10
//! use polars_core::prelude::*;
11
//! use polars_io::prelude::*;
12
//! use std::io::Cursor;
13
//!
14
//!
15
//! let s0 = Column::new("days".into(), &[0, 1, 2, 3, 4]);
16
//! let s1 = Column::new("temp".into(), &[22.1, 19.9, 7., 2., 3.]);
17
//! let mut df = DataFrame::new(vec![s0, s1]).unwrap();
18
//!
19
//! // Create an in memory file handler.
20
//! // Vec<u8>: Read + Write
21
//! // Cursor<T>: Seek
22
//!
23
//! let mut buf: Cursor<Vec<u8>> = Cursor::new(Vec::new());
24
//!
25
//! // write to the in memory buffer
26
//! IpcWriter::new(&mut buf).finish(&mut df).expect("ipc writer");
27
//!
28
//! // reset the buffers index after writing to the beginning of the buffer
29
//! buf.set_position(0);
30
//!
31
//! // read the buffer into a DataFrame
32
//! let df_read = IpcReader::new(buf).finish().unwrap();
33
//! assert!(df.equals(&df_read));
34
//! ```
35
use std::io::{Read, Seek};
36
use std::path::PathBuf;
37
38
use arrow::datatypes::{ArrowSchemaRef, Metadata};
39
use arrow::io::ipc::read::{self, get_row_count};
40
use arrow::record_batch::RecordBatch;
41
use polars_core::prelude::*;
42
#[cfg(feature = "serde")]
43
use serde::{Deserialize, Serialize};
44
45
use crate::RowIndex;
46
use crate::hive::materialize_hive_partitions;
47
use crate::mmap::MmapBytesReader;
48
use crate::predicates::PhysicalIoExpr;
49
use crate::prelude::*;
50
use crate::shared::{ArrowReader, finish_reader};
51
52
#[derive(Clone, Debug, PartialEq, Hash)]
53
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
54
#[cfg_attr(feature = "dsl-schema", derive(schemars::JsonSchema))]
55
pub struct IpcScanOptions;
56
57
#[expect(clippy::derivable_impls)]
58
impl Default for IpcScanOptions {
59
fn default() -> Self {
60
Self {}
61
}
62
}
63
64
/// Read Arrows IPC format into a DataFrame
65
///
66
/// # Example
67
/// ```
68
/// use polars_core::prelude::*;
69
/// use std::fs::File;
70
/// use polars_io::ipc::IpcReader;
71
/// use polars_io::SerReader;
72
///
73
/// fn example() -> PolarsResult<DataFrame> {
74
/// let file = File::open("file.ipc").expect("file not found");
75
///
76
/// IpcReader::new(file)
77
/// .finish()
78
/// }
79
/// ```
80
#[must_use]
81
pub struct IpcReader<R: MmapBytesReader> {
82
/// File or Stream object
83
pub(super) reader: R,
84
/// Aggregates chunks afterwards to a single chunk.
85
rechunk: bool,
86
pub(super) n_rows: Option<usize>,
87
pub(super) projection: Option<Vec<usize>>,
88
pub(crate) columns: Option<Vec<String>>,
89
hive_partition_columns: Option<Vec<Series>>,
90
include_file_path: Option<(PlSmallStr, Arc<str>)>,
91
pub(super) row_index: Option<RowIndex>,
92
// Stores the as key semaphore to make sure we don't write to the memory mapped file.
93
pub(super) memory_map: Option<PathBuf>,
94
metadata: Option<read::FileMetadata>,
95
schema: Option<ArrowSchemaRef>,
96
}
97
98
fn check_mmap_err(err: PolarsError) -> PolarsResult<()> {
99
if let PolarsError::ComputeError(s) = &err {
100
if s.as_ref() == "memory_map can only be done on uncompressed IPC files" {
101
eprintln!(
102
"Could not memory_map compressed IPC file, defaulting to normal read. \
103
Toggle off 'memory_map' to silence this warning."
104
);
105
return Ok(());
106
}
107
}
108
Err(err)
109
}
110
111
impl<R: MmapBytesReader> IpcReader<R> {
112
fn get_metadata(&mut self) -> PolarsResult<&read::FileMetadata> {
113
if self.metadata.is_none() {
114
let metadata = read::read_file_metadata(&mut self.reader)?;
115
self.schema = Some(metadata.schema.clone());
116
self.metadata = Some(metadata);
117
}
118
Ok(self.metadata.as_ref().unwrap())
119
}
120
121
/// Get arrow schema of the Ipc File.
122
pub fn schema(&mut self) -> PolarsResult<ArrowSchemaRef> {
123
self.get_metadata()?;
124
Ok(self.schema.as_ref().unwrap().clone())
125
}
126
127
/// Get schema-level custom metadata of the Ipc file
128
pub fn custom_metadata(&mut self) -> PolarsResult<Option<Arc<Metadata>>> {
129
self.get_metadata()?;
130
Ok(self
131
.metadata
132
.as_ref()
133
.and_then(|meta| meta.custom_schema_metadata.clone()))
134
}
135
136
/// Stop reading when `n` rows are read.
137
pub fn with_n_rows(mut self, num_rows: Option<usize>) -> Self {
138
self.n_rows = num_rows;
139
self
140
}
141
142
/// Columns to select/ project
143
pub fn with_columns(mut self, columns: Option<Vec<String>>) -> Self {
144
self.columns = columns;
145
self
146
}
147
148
pub fn with_hive_partition_columns(mut self, columns: Option<Vec<Series>>) -> Self {
149
self.hive_partition_columns = columns;
150
self
151
}
152
153
pub fn with_include_file_path(
154
mut self,
155
include_file_path: Option<(PlSmallStr, Arc<str>)>,
156
) -> Self {
157
self.include_file_path = include_file_path;
158
self
159
}
160
161
/// Add a row index column.
162
pub fn with_row_index(mut self, row_index: Option<RowIndex>) -> Self {
163
self.row_index = row_index;
164
self
165
}
166
167
/// Set the reader's column projection. This counts from 0, meaning that
168
/// `vec![0, 4]` would select the 1st and 5th column.
169
pub fn with_projection(mut self, projection: Option<Vec<usize>>) -> Self {
170
self.projection = projection;
171
self
172
}
173
174
/// Set if the file is to be memory_mapped. Only works with uncompressed files.
175
/// The file name must be passed to register the memory mapped file.
176
pub fn memory_mapped(mut self, path_buf: Option<PathBuf>) -> Self {
177
self.memory_map = path_buf;
178
self
179
}
180
181
// todo! hoist to lazy crate
182
#[cfg(feature = "lazy")]
183
pub fn finish_with_scan_ops(
184
mut self,
185
predicate: Option<Arc<dyn PhysicalIoExpr>>,
186
verbose: bool,
187
) -> PolarsResult<DataFrame> {
188
if self.memory_map.is_some() && self.reader.to_file().is_some() {
189
if verbose {
190
eprintln!("memory map ipc file")
191
}
192
match self.finish_memmapped(predicate.clone()) {
193
Ok(df) => return Ok(df),
194
Err(err) => check_mmap_err(err)?,
195
}
196
}
197
let rechunk = self.rechunk;
198
let metadata = read::read_file_metadata(&mut self.reader)?;
199
200
// NOTE: For some code paths this already happened. See
201
// https://github.com/pola-rs/polars/pull/14984#discussion_r1520125000
202
// where this was introduced.
203
if let Some(columns) = &self.columns {
204
self.projection = Some(columns_to_projection(columns, &metadata.schema)?);
205
}
206
207
let schema = if let Some(projection) = &self.projection {
208
Arc::new(apply_projection(&metadata.schema, projection))
209
} else {
210
metadata.schema.clone()
211
};
212
213
let reader = read::FileReader::new(self.reader, metadata, self.projection, self.n_rows);
214
215
finish_reader(reader, rechunk, None, predicate, &schema, self.row_index)
216
}
217
}
218
219
impl<R: MmapBytesReader> ArrowReader for read::FileReader<R>
220
where
221
R: Read + Seek,
222
{
223
fn next_record_batch(&mut self) -> PolarsResult<Option<RecordBatch>> {
224
self.next().map_or(Ok(None), |v| v.map(Some))
225
}
226
}
227
228
impl<R: MmapBytesReader> SerReader<R> for IpcReader<R> {
229
fn new(reader: R) -> Self {
230
IpcReader {
231
reader,
232
rechunk: true,
233
n_rows: None,
234
columns: None,
235
hive_partition_columns: None,
236
include_file_path: None,
237
projection: None,
238
row_index: None,
239
memory_map: None,
240
metadata: None,
241
schema: None,
242
}
243
}
244
245
fn set_rechunk(mut self, rechunk: bool) -> Self {
246
self.rechunk = rechunk;
247
self
248
}
249
250
fn finish(mut self) -> PolarsResult<DataFrame> {
251
let reader_schema = if let Some(ref schema) = self.schema {
252
schema.clone()
253
} else {
254
self.get_metadata()?.schema.clone()
255
};
256
let reader_schema = reader_schema.as_ref();
257
258
let hive_partition_columns = self.hive_partition_columns.take();
259
let include_file_path = self.include_file_path.take();
260
261
// In case only hive columns are projected, the df would be empty, but we need the row count
262
// of the file in order to project the correct number of rows for the hive columns.
263
let mut df = (|| {
264
if self.projection.as_ref().is_some_and(|x| x.is_empty()) {
265
let row_count = if let Some(v) = self.n_rows {
266
v
267
} else {
268
get_row_count(&mut self.reader)? as usize
269
};
270
let mut df = DataFrame::empty_with_height(row_count);
271
272
if let Some(ri) = &self.row_index {
273
unsafe { df.with_row_index_mut(ri.name.clone(), Some(ri.offset)) };
274
}
275
return PolarsResult::Ok(df);
276
}
277
278
if self.memory_map.is_some() && self.reader.to_file().is_some() {
279
match self.finish_memmapped(None) {
280
Ok(df) => {
281
return Ok(df);
282
},
283
Err(err) => check_mmap_err(err)?,
284
}
285
}
286
let rechunk = self.rechunk;
287
let schema = self.get_metadata()?.schema.clone();
288
289
if let Some(columns) = &self.columns {
290
let prj = columns_to_projection(columns, schema.as_ref())?;
291
self.projection = Some(prj);
292
}
293
294
let schema = if let Some(projection) = &self.projection {
295
Arc::new(apply_projection(schema.as_ref(), projection))
296
} else {
297
schema
298
};
299
300
let metadata = self.get_metadata()?.clone();
301
302
let ipc_reader =
303
read::FileReader::new(self.reader, metadata, self.projection, self.n_rows);
304
let df = finish_reader(ipc_reader, rechunk, None, None, &schema, self.row_index)?;
305
Ok(df)
306
})()?;
307
308
if let Some(hive_cols) = hive_partition_columns {
309
materialize_hive_partitions(&mut df, reader_schema, Some(hive_cols.as_slice()));
310
};
311
312
if let Some((col, value)) = include_file_path {
313
unsafe {
314
df.with_column_unchecked(Column::new_scalar(
315
col,
316
Scalar::new(
317
DataType::String,
318
AnyValue::StringOwned(value.as_ref().into()),
319
),
320
df.height(),
321
))
322
};
323
}
324
325
Ok(df)
326
}
327
}
328
329