Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
pola-rs
GitHub Repository: pola-rs/polars
Path: blob/main/crates/polars-python/src/interop/numpy/utils.rs
7892 views
1
#![allow(unsafe_op_in_unsafe_fn)]
2
use std::ffi::{c_int, c_void};
3
4
use ndarray::{Dim, Dimension};
5
use numpy::npyffi::PyArrayObject;
6
use numpy::{Element, PY_ARRAY_API, PyArrayDescr, PyArrayDescrMethods, ToNpyDims, npyffi};
7
use polars_core::prelude::*;
8
use pyo3::intern;
9
use pyo3::prelude::*;
10
use pyo3::types::PyTuple;
11
12
/// Create a NumPy ndarray view of the data.
13
pub(super) unsafe fn create_borrowed_np_array<I>(
14
py: Python<'_>,
15
dtype: Bound<PyArrayDescr>,
16
mut shape: Dim<I>,
17
flags: c_int,
18
data: *mut c_void,
19
owner: Py<PyAny>,
20
) -> Py<PyAny>
21
where
22
Dim<I>: Dimension + ToNpyDims,
23
{
24
// See: https://numpy.org/doc/stable/reference/c-api/array.html
25
let array = PY_ARRAY_API.PyArray_NewFromDescr(
26
py,
27
PY_ARRAY_API.get_type_object(py, npyffi::NpyTypes::PyArray_Type),
28
dtype.into_dtype_ptr(),
29
shape.ndim_cint(),
30
shape.as_dims_ptr(),
31
// We don't provide strides, but provide flags that tell c/f-order
32
std::ptr::null_mut(),
33
data,
34
flags,
35
std::ptr::null_mut(),
36
);
37
38
// This keeps the memory alive
39
let owner_ptr = owner.as_ptr();
40
// SetBaseObject steals a reference
41
// so we can forget.
42
std::mem::forget(owner);
43
PY_ARRAY_API.PyArray_SetBaseObject(py, array as *mut PyArrayObject, owner_ptr);
44
45
Py::from_owned_ptr(py, array)
46
}
47
48
/// Returns whether the data type supports creating a NumPy view.
49
pub(super) fn dtype_supports_view(dtype: &DataType) -> bool {
50
match dtype {
51
dt if dt.is_primitive_numeric() => true,
52
DataType::Datetime(_, _) | DataType::Duration(_) => true,
53
DataType::Array(inner, _) => dtype_supports_view(inner.as_ref()),
54
_ => false,
55
}
56
}
57
58
/// Returns whether the Series contains nulls at any level of nesting.
59
///
60
/// Of the nested types, only Array types are handled since only those are relevant for NumPy views.
61
pub(super) fn series_contains_null(s: &Series) -> bool {
62
if s.null_count() > 0 {
63
true
64
} else if let Ok(ca) = s.array() {
65
let s_inner = ca.get_inner();
66
series_contains_null(&s_inner)
67
} else {
68
false
69
}
70
}
71
72
/// Reshape the first dimension of a NumPy array to the given height and width.
73
pub(super) fn reshape_numpy_array(
74
py: Python<'_>,
75
arr: Py<PyAny>,
76
height: usize,
77
width: usize,
78
) -> PyResult<Py<PyAny>> {
79
let shape = arr
80
.getattr(py, intern!(py, "shape"))?
81
.extract::<Vec<usize>>(py)?;
82
83
if shape.len() == 1 {
84
// In this case, we can avoid allocating a Vec.
85
let new_shape = (height, width);
86
arr.call_method1(py, intern!(py, "reshape"), new_shape)
87
} else {
88
let mut new_shape_vec = vec![height, width];
89
for v in &shape[1..] {
90
new_shape_vec.push(*v)
91
}
92
let new_shape = PyTuple::new(py, new_shape_vec)?;
93
arr.call_method1(py, intern!(py, "reshape"), new_shape)
94
}
95
}
96
97
/// Get the NumPy temporal data type associated with the given Polars [`DataType`].
98
pub(super) fn polars_dtype_to_np_temporal_dtype<'py>(
99
py: Python<'py>,
100
dtype: &DataType,
101
) -> Bound<'py, PyArrayDescr> {
102
use numpy::datetime::{Datetime, Timedelta, units};
103
match dtype {
104
DataType::Datetime(TimeUnit::Milliseconds, _) => {
105
Datetime::<units::Milliseconds>::get_dtype(py)
106
},
107
DataType::Datetime(TimeUnit::Microseconds, _) => {
108
Datetime::<units::Microseconds>::get_dtype(py)
109
},
110
DataType::Datetime(TimeUnit::Nanoseconds, _) => {
111
Datetime::<units::Nanoseconds>::get_dtype(py)
112
},
113
DataType::Duration(TimeUnit::Milliseconds) => {
114
Timedelta::<units::Milliseconds>::get_dtype(py)
115
},
116
DataType::Duration(TimeUnit::Microseconds) => {
117
Timedelta::<units::Microseconds>::get_dtype(py)
118
},
119
DataType::Duration(TimeUnit::Nanoseconds) => Timedelta::<units::Nanoseconds>::get_dtype(py),
120
_ => panic!("only Datetime/Duration inputs supported, got {dtype}"),
121
}
122
}
123
124