Kernel: Python 3
generic
In [1]:
In [2]:
In [3]:
In [4]:
Out[4]:
a b c
2018-01-01 1.0 NaN 1.0
2018-01-02 2.0 4.0 2.0
2018-01-03 3.0 3.0 NaN
2018-01-04 4.0 2.0 2.0
2018-01-05 NaN 1.0 1.0
In [5]:
Out[5]:
(1000, 1000)
In [6]:
In [7]:
Out[7]:
1 days 00:00:00
1 days 00:00:00
2 days 00:00:00
2 days 00:00:00
None
3 days 00:00:00
4 days 00:00:00
In [8]:
Out[8]:
a b c
2018-01-01 1.0 -1.0 1.0
2018-01-02 2.0 4.0 2.0
2018-01-03 3.0 3.0 -1.0
2018-01-04 4.0 2.0 2.0
2018-01-05 -1.0 1.0 1.0
2.76 ms ± 83.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a b c
2018-01-01 1.0 -1.0 1.0
2018-01-02 2.0 4.0 2.0
2018-01-03 3.0 3.0 -1.0
2018-01-04 4.0 2.0 2.0
2018-01-05 -1.0 1.0 1.0
1.12 ms ± 3.48 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [9]:
Out[9]:
a b c
2018-01-01 4.0 2.0 2.0
2018-01-02 NaN 1.0 1.0
2018-01-03 NaN NaN NaN
2018-01-04 NaN NaN NaN
2018-01-05 NaN NaN NaN
382 µs ± 1.89 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
a b c
2018-01-01 4.0 2.0 2.0
2018-01-02 NaN 1.0 1.0
2018-01-03 NaN NaN NaN
2018-01-04 NaN NaN NaN
2018-01-05 NaN NaN NaN
1.59 ms ± 12 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [10]:
Out[10]:
a b c
2018-01-01 NaN NaN NaN
2018-01-02 NaN NaN NaN
2018-01-03 NaN NaN NaN
2018-01-04 1.0 NaN 1.0
2018-01-05 2.0 4.0 2.0
405 µs ± 24 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
a b c
2018-01-01 NaN NaN NaN
2018-01-02 NaN NaN NaN
2018-01-03 NaN NaN NaN
2018-01-04 1.0 NaN 1.0
2018-01-05 2.0 4.0 2.0
1.93 ms ± 187 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [11]:
Out[11]:
a b c
2018-01-01 NaN NaN NaN
2018-01-02 1.0 NaN 1.0
2018-01-03 1.0 -1.0 NaN
2018-01-04 1.0 -1.0 NaN
2018-01-05 NaN -1.0 -1.0
892 µs ± 8.89 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
a b c
2018-01-01 NaN NaN NaN
2018-01-02 1.0 NaN 1.0
2018-01-03 1.0 -1.0 NaN
2018-01-04 1.0 -1.0 NaN
2018-01-05 NaN -1.0 -1.0
2.45 ms ± 13.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [12]:
Out[12]:
a b c
2018-01-01 NaN NaN NaN
2018-01-02 1.000000 NaN 1.0
2018-01-03 0.500000 -0.250000 NaN
2018-01-04 0.333333 -0.333333 NaN
2018-01-05 NaN -0.500000 -0.5
1.47 ms ± 22.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
a b c
2018-01-01 NaN NaN NaN
2018-01-02 1.000000 NaN 1.0
2018-01-03 0.500000 -0.250000 NaN
2018-01-04 0.333333 -0.333333 NaN
2018-01-05 NaN -0.500000 -0.5
2.27 ms ± 32.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [13]:
Out[13]:
a b c
2018-01-01 1.0 NaN 1.0
2018-01-02 2.0 4.0 2.0
2018-01-03 3.0 3.0 2.0
2018-01-04 4.0 2.0 2.0
2018-01-05 4.0 1.0 1.0
1.68 ms ± 77.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
a b c
2018-01-01 1.0 NaN 1.0
2018-01-02 2.0 4.0 2.0
2018-01-03 3.0 3.0 2.0
2018-01-04 4.0 2.0 2.0
2018-01-05 4.0 1.0 1.0
3.33 ms ± 12.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [14]:
Out[14]:
a 24.0
b 24.0
c 4.0
dtype: float32
4.3 ms ± 18.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a 24.0
b 24.0
c 4.0
Name: product, dtype: float64
2.55 ms ± 6.41 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [15]:
Out[15]:
a b c
2018-01-01 1.0 NaN 1.0
2018-01-02 3.0 4.0 3.0
2018-01-03 6.0 7.0 NaN
2018-01-04 10.0 9.0 5.0
2018-01-05 NaN 10.0 6.0
4.6 ms ± 79.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a b c
2018-01-01 1.0 0.0 1.0
2018-01-02 3.0 4.0 3.0
2018-01-03 6.0 7.0 3.0
2018-01-04 10.0 9.0 5.0
2018-01-05 10.0 10.0 6.0
3.53 ms ± 229 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [16]:
Out[16]:
a b c
2018-01-01 1.0 NaN 1.0
2018-01-02 2.0 4.0 2.0
2018-01-03 6.0 12.0 NaN
2018-01-04 24.0 24.0 4.0
2018-01-05 NaN 24.0 4.0
4.45 ms ± 4.72 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a b c
2018-01-01 1.0 1.0 1.0
2018-01-02 2.0 4.0 2.0
2018-01-03 6.0 12.0 2.0
2018-01-04 24.0 24.0 4.0
2018-01-05 24.0 24.0 4.0
3.72 ms ± 9.51 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [17]:
Out[17]:
a b c
2018-01-01 NaN NaN NaN
2018-01-02 1.0 NaN 1.0
2018-01-03 2.0 3.0 NaN
2018-01-04 3.0 2.0 NaN
2018-01-05 NaN 1.0 1.0
57.1 ms ± 228 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
a b c
2018-01-01 NaN NaN NaN
2018-01-02 1.0 NaN 1.0
2018-01-03 2.0 3.0 NaN
2018-01-04 3.0 2.0 NaN
2018-01-05 NaN 1.0 1.0
5.92 ms ± 368 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [18]:
Out[18]:
a b c
2018-01-01 NaN NaN NaN
2018-01-02 2.0 NaN 2.0
2018-01-03 3.0 4.0 NaN
2018-01-04 4.0 3.0 NaN
2018-01-05 NaN 2.0 2.0
56.8 ms ± 191 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
a b c
2018-01-01 NaN NaN NaN
2018-01-02 2.0 NaN 2.0
2018-01-03 3.0 4.0 NaN
2018-01-04 4.0 3.0 NaN
2018-01-05 NaN 2.0 2.0
5.48 ms ± 419 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [19]:
Out[19]:
a b c
2018-01-01 NaN NaN NaN
2018-01-02 1.5 NaN 1.5
2018-01-03 2.5 3.5 NaN
2018-01-04 3.5 2.5 NaN
2018-01-05 NaN 1.5 1.5
48.8 ms ± 112 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
a b c
2018-01-01 NaN NaN NaN
2018-01-02 1.5 NaN 1.5
2018-01-03 2.5 3.5 NaN
2018-01-04 3.5 2.5 NaN
2018-01-05 NaN 1.5 1.5
5.98 ms ± 328 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [20]:
Out[20]:
a b c
2018-01-01 NaN NaN NaN
2018-01-02 0.707107 NaN 0.707107
2018-01-03 0.707107 0.707107 NaN
2018-01-04 0.707107 0.707107 NaN
2018-01-05 NaN 0.707107 0.707107
64.4 ms ± 106 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
a b c
2018-01-01 NaN NaN NaN
2018-01-02 0.707107 NaN 0.707107
2018-01-03 0.707107 0.707107 NaN
2018-01-04 0.707107 0.707107 NaN
2018-01-05 NaN 0.707107 0.707107
9.16 ms ± 534 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [21]:
Out[21]:
a b c
2018-01-01 1.000000 NaN 1.000000
2018-01-02 1.750000 4.000000 1.750000
2018-01-03 2.615385 3.250000 1.750000
2018-01-04 3.550000 2.384615 1.967742
2018-01-05 3.550000 1.450000 1.267857
34.1 ms ± 176 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
a b c
2018-01-01 1.000000 NaN 1.000000
2018-01-02 1.750000 4.000000 1.750000
2018-01-03 2.615385 3.250000 1.750000
2018-01-04 3.550000 2.384615 1.967742
2018-01-05 3.550000 1.450000 1.267857
6.79 ms ± 18.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [22]:
Out[22]:
a b c
2018-01-01 NaN NaN NaN
2018-01-02 0.707107 NaN 0.707107
2018-01-03 0.919866 0.707107 0.707107
2018-01-04 1.059753 0.919866 0.367607
2018-01-05 1.059753 1.059753 0.684914
19.8 ms ± 53.6 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
a b c
2018-01-01 NaN NaN NaN
2018-01-02 0.707107 NaN 0.707107
2018-01-03 0.919866 0.707107 0.707107
2018-01-04 1.059753 0.919866 0.367607
2018-01-05 1.059753 1.059753 0.684914
8.68 ms ± 15.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [23]:
Out[23]:
a b c
2018-01-01 1.0 NaN 1.0
2018-01-02 1.0 4.0 1.0
2018-01-03 1.0 3.0 1.0
2018-01-04 1.0 2.0 1.0
2018-01-05 1.0 1.0 1.0
33.9 ms ± 100 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
a b c
2018-01-01 1.0 NaN 1.0
2018-01-02 1.0 4.0 1.0
2018-01-03 1.0 3.0 1.0
2018-01-04 1.0 2.0 1.0
2018-01-05 1.0 1.0 1.0
4.5 ms ± 241 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [24]:
Out[24]:
a b c
2018-01-01 1.0 NaN 1.0
2018-01-02 2.0 4.0 2.0
2018-01-03 3.0 4.0 2.0
2018-01-04 4.0 4.0 2.0
2018-01-05 4.0 4.0 2.0
33.7 ms ± 102 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
a b c
2018-01-01 1.0 NaN 1.0
2018-01-02 2.0 4.0 2.0
2018-01-03 3.0 4.0 2.0
2018-01-04 4.0 4.0 2.0
2018-01-05 4.0 4.0 2.0
3.42 ms ± 618 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [25]:
Out[25]:
a b c
2018-01-01 1.0 NaN 1.000000
2018-01-02 1.5 4.0 1.500000
2018-01-03 2.0 3.5 1.500000
2018-01-04 2.5 3.0 1.666667
2018-01-05 2.5 2.5 1.500000
21.9 ms ± 68.2 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
a b c
2018-01-01 1.0 NaN 1.000000
2018-01-02 1.5 4.0 1.500000
2018-01-03 2.0 3.5 1.500000
2018-01-04 2.5 3.0 1.666667
2018-01-05 2.5 2.5 1.500000
5.28 ms ± 354 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [26]:
Out[26]:
a b c
2018-01-01 NaN NaN NaN
2018-01-02 0.707107 NaN 0.707107
2018-01-03 1.000000 0.707107 0.707107
2018-01-04 1.290994 1.000000 0.577350
2018-01-05 1.290994 1.290994 0.577350
34.7 ms ± 111 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
a b c
2018-01-01 NaN NaN NaN
2018-01-02 0.707107 NaN 0.707107
2018-01-03 1.000000 0.707107 0.707107
2018-01-04 1.290994 1.000000 0.577350
2018-01-05 1.290994 1.290994 0.577350
8.24 ms ± 102 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [27]:
In [28]:
Out[28]:
a b c
2018-01-01 1.0 NaN 1.0
2018-01-02 4.0 16.0 4.0
2018-01-03 9.0 9.0 NaN
2018-01-04 16.0 4.0 4.0
2018-01-05 NaN 1.0 1.0
3.38 ms ± 98.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a b c
2018-01-01 1.0 NaN 1.0
2018-01-02 4.0 16.0 4.0
2018-01-03 9.0 9.0 NaN
2018-01-04 16.0 4.0 4.0
2018-01-05 NaN 1.0 1.0
2.03 ms ± 327 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [10]:
In [30]:
Out[30]:
a b c
2018-01-01 1.0 NaN 1.0
2018-01-02 1.5 4.0 1.5
2018-01-03 2.5 3.5 2.0
2018-01-04 3.5 2.5 2.0
2018-01-05 4.0 1.5 1.5
483 ms ± 3.14 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
a b c
2018-01-01 NaN NaN NaN
2018-01-02 1.5 NaN 1.5
2018-01-03 2.5 3.5 NaN
2018-01-04 3.5 2.5 NaN
2018-01-05 NaN 1.5 1.5
6.04 ms ± 323 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
a b c
2018-01-01 NaN NaN NaN
2018-01-02 NaN NaN NaN
2018-01-03 NaN NaN NaN
2018-01-04 2.75 2.75 2.75
2018-01-05 NaN NaN NaN
7.24 ms ± 82.7 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [31]:
Out[31]:
a b c
2018-01-01 1.0 NaN 1.000000
2018-01-02 1.5 4.0 1.500000
2018-01-03 2.0 3.5 1.500000
2018-01-04 2.5 3.0 1.666667
2018-01-05 2.5 2.5 1.500000
1.55 s ± 3.23 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
a b c
2018-01-01 1.0 NaN 1.000000
2018-01-02 1.5 4.0 1.500000
2018-01-03 2.0 3.5 1.500000
2018-01-04 2.5 3.0 1.666667
2018-01-05 2.5 2.5 1.500000
1.09 s ± 8.34 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
a b c
2018-01-01 NaN NaN NaN
2018-01-02 2.000000 2.000000 2.000000
2018-01-03 2.285714 2.285714 2.285714
2018-01-04 2.400000 2.400000 2.400000
2018-01-05 2.166667 2.166667 2.166667
1.12 s ± 442 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [32]:
Out[32]:
1 1.5
2 3.5
3 NaN
Name: a, dtype: float64
471 µs ± 456 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1 1.5
2 3.5
3 NaN
Name: a, dtype: float64
1.46 ms ± 3.84 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
a b c
1 1.5 4.0 1.5
2 3.5 2.5 2.0
3 NaN 1.0 1.0
a b c
1 1.5 4.0 1.5
2 3.5 2.5 2.0
3 NaN 1.0 1.0
4.85 ms ± 18.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a b c
1 2.0 2.0 2.0
2 2.8 2.8 2.8
3 1.0 1.0 1.0
3.15 ms ± 223 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [11]:
Out[11]:
2018-01-01 00:00:00 1.0
2018-01-01 01:00:00 NaN
2018-01-01 02:00:00 NaN
2018-01-01 03:00:00 NaN
2018-01-01 04:00:00 NaN
...
2018-01-04 20:00:00 NaN
2018-01-04 21:00:00 NaN
2018-01-04 22:00:00 NaN
2018-01-04 23:00:00 NaN
2018-01-05 00:00:00 NaN
Freq: H, Name: a, Length: 97, dtype: float64
96.6 ms ± 320 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
2018-01-01 00:00:00 1.0
2018-01-01 01:00:00 NaN
2018-01-01 02:00:00 NaN
2018-01-01 03:00:00 NaN
2018-01-01 04:00:00 NaN
...
2018-01-04 20:00:00 NaN
2018-01-04 21:00:00 NaN
2018-01-04 22:00:00 NaN
2018-01-04 23:00:00 NaN
2018-01-05 00:00:00 NaN
Freq: H, Name: a, Length: 97, dtype: float64
21.3 ms ± 456 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
a b c
2018-01-01 00:00:00 1.0 NaN 1.0
2018-01-01 01:00:00 NaN NaN NaN
2018-01-01 02:00:00 NaN NaN NaN
2018-01-01 03:00:00 NaN NaN NaN
2018-01-01 04:00:00 NaN NaN NaN
... ... ... ...
2018-01-04 20:00:00 NaN NaN NaN
2018-01-04 21:00:00 NaN NaN NaN
2018-01-04 22:00:00 NaN NaN NaN
2018-01-04 23:00:00 NaN NaN NaN
2018-01-05 00:00:00 NaN 1.0 1.0
[97 rows x 3 columns]
9.7 s ± 60.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
a b c
2018-01-01 00:00:00 1.0 NaN 1.0
2018-01-01 01:00:00 NaN NaN NaN
2018-01-01 02:00:00 NaN NaN NaN
2018-01-01 03:00:00 NaN NaN NaN
2018-01-01 04:00:00 NaN NaN NaN
... ... ... ...
2018-01-04 20:00:00 NaN NaN NaN
2018-01-04 21:00:00 NaN NaN NaN
2018-01-04 22:00:00 NaN NaN NaN
2018-01-04 23:00:00 NaN NaN NaN
2018-01-05 00:00:00 NaN 1.0 1.0
[97 rows x 3 columns]
238 ms ± 10.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
a b c
2018-01-01 00:00:00 1.0 1.0 1.0
2018-01-01 01:00:00 NaN NaN NaN
2018-01-01 02:00:00 NaN NaN NaN
2018-01-01 03:00:00 NaN NaN NaN
2018-01-01 04:00:00 NaN NaN NaN
... ... ... ...
2018-01-04 20:00:00 NaN NaN NaN
2018-01-04 21:00:00 NaN NaN NaN
2018-01-04 22:00:00 NaN NaN NaN
2018-01-04 23:00:00 NaN NaN NaN
2018-01-05 00:00:00 1.0 1.0 1.0
[97 rows x 3 columns]
121 ms ± 1.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [12]:
Out[12]:
2018-01-01 2.0
2018-01-04 4.0
Freq: 3D, Name: a, dtype: float64
1.45 ms ± 14 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
2018-01-01 2.0
2018-01-04 4.0
Freq: 3D, Name: a, dtype: float64
3.81 ms ± 19.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a b c
2018-01-01 2.0 3.5 1.5
2018-01-04 4.0 1.5 1.5
1.29 s ± 6.93 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
a b c
2018-01-01 2.0 3.5 1.5
2018-01-04 4.0 1.5 1.5
42.9 ms ± 256 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
a b c
2018-01-01 2.285714 2.285714 2.285714
2018-01-04 2.000000 2.000000 2.000000
6.18 ms ± 209 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [13]:
Out[13]:
2018-01-07 2.5
Freq: W-SUN, Name: a, dtype: float64
2 ms ± 13.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
2018-01-07 2.5
Freq: W-SUN, Name: a, dtype: float64
4.08 ms ± 16.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a b c
2018-01-07 2.5 2.5 1.5
730 ms ± 16.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
a b c
2018-01-07 2.5 2.5 1.5
21.5 ms ± 347 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
a b c
2018-01-07 2.166667 2.166667 2.166667
5.85 ms ± 47.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [14]:
Out[14]:
a b c
2018-01-01 2.0 NaN 2.0
2018-01-02 4.0 8.0 4.0
2018-01-03 6.0 6.0 NaN
2018-01-04 8.0 4.0 4.0
2018-01-05 NaN 2.0 2.0
241 ms ± 1.75 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
2018-01-01 2.0
2018-01-02 4.0
2018-01-03 6.0
2018-01-04 8.0
2018-01-05 NaN
Freq: D, Name: a, dtype: float64
1.1 ms ± 3.65 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
a b c
2018-01-01 2.0 NaN 2.0
2018-01-02 4.0 8.0 4.0
2018-01-03 6.0 6.0 NaN
2018-01-04 8.0 4.0 4.0
2018-01-05 NaN 2.0 2.0
4.28 ms ± 42.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [15]:
Out[15]:
a b c
2018-01-01 NaN NaN NaN
2018-01-02 NaN 4.0 NaN
2018-01-03 3.0 3.0 NaN
2018-01-04 4.0 NaN NaN
2018-01-05 NaN NaN NaN
258 ms ± 3.52 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
2018-01-01 NaN
2018-01-02 NaN
2018-01-03 3.0
2018-01-04 4.0
2018-01-05 NaN
Freq: D, Name: a, dtype: float64
1.11 ms ± 1.61 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
a b c
2018-01-01 NaN NaN NaN
2018-01-02 NaN 4.0 NaN
2018-01-03 3.0 3.0 NaN
2018-01-04 4.0 NaN NaN
2018-01-05 NaN NaN NaN
6.85 ms ± 78.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [17]:
Out[17]:
4.0
1.12 ms ± 12.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
a 4.0
b 4.0
c 2.0
Name: apply_and_reduce, dtype: float32
1.14 ms ± 18.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
a 4 days
b 4 days
c 2 days
Name: apply_and_reduce, dtype: timedelta64[ns]
1.22 ms ± 746 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [18]:
Out[18]:
a 10.0
b 10.0
c 6.0
dtype: float32
29.6 ms ± 200 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
10.0
1.09 ms ± 1.12 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
a 10.0
b 10.0
c 6.0
Name: reduce, dtype: float32
2.25 ms ± 1.61 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a 10 days
b 10 days
c 6 days
Name: reduce, dtype: timedelta64[ns]
2.35 ms ± 1.55 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [20]:
Out[20]:
2018-01-05 00:00:00
1.12 ms ± 12.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
a 2018-01-05
b 2018-01-01
c 2018-01-03
Name: reduce, dtype: datetime64[ns]
7.52 ms ± 69.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [22]:
Out[22]:
a b c
0 1.0 1.0 1.0
1 4.0 4.0 2.0
65 ms ± 443 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
min 1.0
max 4.0
Name: a, dtype: float64
1.21 ms ± 135 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
a b c
min 1.0 1.0 1.0
max 4.0 4.0 2.0
4.11 ms ± 69.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a b c
min 1 days 1 days 1 days
max 4 days 4 days 2 days
4.23 ms ± 83.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [23]:
Out[23]:
0 20.0
1 6.0
Name: reduce, dtype: float32
3.41 ms ± 98.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
0 20.0
1 6.0
Name: reduce, dtype: float32
4.57 ms ± 180 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
0 20.0
1 6.0
Name: reduce, dtype: float32
4.44 ms ± 108 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
0 1
min 1.0 1.0
max 4.0 2.0
5.65 ms ± 387 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
0 1
min 1.0 1.0
max 4.0 2.0
5.97 ms ± 241 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
0 1
min 1.0 1.0
max 4.0 2.0
5.58 ms ± 68.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [24]:
Out[24]:
0 1
2018-01-01 1.0 1.0
2018-01-02 3.0 2.0
2018-01-03 3.0 NaN
2018-01-04 3.0 2.0
2018-01-05 1.0 1.0
3.48 ms ± 8.59 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [25]:
Out[25]:
0 1
2018-01-01 1.0 1.0
2018-01-02 2.0 2.0
2018-01-03 3.0 NaN
2018-01-04 4.0 2.0
2018-01-05 NaN 1.0
2018-01-01 NaN NaN
2018-01-02 4.0 NaN
2018-01-03 3.0 NaN
2018-01-04 2.0 NaN
2018-01-05 1.0 NaN
3.54 ms ± 525 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
0 1
2018-01-01 1.0 1.0
2018-01-01 NaN NaN
2018-01-02 2.0 2.0
2018-01-02 4.0 NaN
2018-01-03 3.0 NaN
2018-01-03 3.0 NaN
2018-01-04 4.0 2.0
2018-01-04 2.0 NaN
2018-01-05 NaN 1.0
2018-01-05 1.0 NaN
4.2 ms ± 60.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [26]:
Out[26]:
a 1.0
b 1.0
c 1.0
dtype: float32
4.1 ms ± 4.69 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a 1.0
b 1.0
c 1.0
Name: min, dtype: float32
2.83 ms ± 2.08 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a 1 days
b 1 days
c 1 days
Name: min, dtype: timedelta64[ns]
3.04 ms ± 93.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
0 1.0
1 1.0
Name: min, dtype: float32
4.71 ms ± 305 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [27]:
Out[27]:
a 4.0
b 4.0
c 2.0
dtype: float32
4.8 ms ± 89 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a 4.0
b 4.0
c 2.0
Name: max, dtype: float32
3.39 ms ± 15.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a 4 days
b 4 days
c 2 days
Name: max, dtype: timedelta64[ns]
3.63 ms ± 134 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
0 4.0
1 2.0
Name: max, dtype: float32
4.28 ms ± 468 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [28]:
Out[28]:
a 2.5
b 2.5
c 1.5
dtype: float32
2.53 ms ± 6.77 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a 2.5
b 2.5
c 1.5
Name: mean, dtype: float32
1.23 ms ± 15.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
a 2 days 12:00:00
b 2 days 12:00:00
c 1 days 12:00:00
Name: mean, dtype: timedelta64[ns]
1.38 ms ± 21.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
0 2.5
1 1.5
Name: mean, dtype: float64
4.31 ms ± 140 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [29]:
Out[29]:
a 1.290994
b 1.290994
c 0.577350
dtype: float32
3.44 ms ± 3.03 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a 1.290994
b 1.290994
c 0.577350
Name: std, dtype: float32
2.16 ms ± 1.77 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a 1 days 06:59:01.916656494
b 1 days 06:59:01.916656494
c 0 days 13:51:23.062362670
Name: std, dtype: timedelta64[ns]
2.68 ms ± 302 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
0 1.195229
1 0.577350
Name: std, dtype: float64
7.32 ms ± 99.8 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [30]:
Out[30]:
a 4
b 4
c 4
dtype: int64
2.43 ms ± 3.33 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a 4
b 4
c 4
Name: count, dtype: int64
1.03 ms ± 24.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
a 4 days
b 4 days
c 4 days
Name: count, dtype: timedelta64[ns]
1.12 ms ± 2.34 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
0 8
1 4
Name: count, dtype: int64
2.71 ms ± 115 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [31]:
Out[31]:
a 2018-01-01
b 2018-01-05
c 2018-01-01
dtype: datetime64[ns]
10.1 ms ± 116 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a 2018-01-01
b 2018-01-05
c 2018-01-01
Name: idxmin, dtype: datetime64[ns]
5.18 ms ± 58.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
0 2018-01-01
1 2018-01-01
Name: idxmin, dtype: datetime64[ns]
7.5 ms ± 208 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [32]:
Out[32]:
a 2018-01-04
b 2018-01-02
c 2018-01-02
dtype: datetime64[ns]
10.4 ms ± 187 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
a 2018-01-04
b 2018-01-02
c 2018-01-02
Name: idxmax, dtype: datetime64[ns]
4.99 ms ± 318 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
0 2018-01-02
1 2018-01-02
Name: idxmax, dtype: datetime64[ns]
8.04 ms ± 218 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [33]:
Out[33]:
a b c
count 4.000000 4.000000 4.00000
mean 2.500000 2.500000 1.50000
std 1.290994 1.290994 0.57735
min 1.000000 1.000000 1.00000
0% 1.000000 1.000000 1.00000
10% 1.300000 1.300000 1.00000
20% 1.600000 1.600000 1.00000
30% 1.900000 1.900000 1.00000
40% 2.200000 2.200000 1.20000
50% 2.500000 2.500000 1.50000
60% 2.800000 2.800000 1.80000
70% 3.100000 3.100000 2.00000
80% 3.400000 3.400000 2.00000
90% 3.700000 3.700000 2.00000
max 4.000000 4.000000 2.00000
759 ms ± 3.21 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
a b c
count 4.000000 4.000000 4.00000
mean 2.500000 2.500000 1.50000
std 1.290994 1.290994 0.57735
min 1.000000 1.000000 1.00000
0% 1.000000 1.000000 1.00000
10% 1.300000 1.300000 1.00000
20% 1.600000 1.600000 1.00000
30% 1.900000 1.900000 1.00000
40% 2.200000 2.200000 1.20000
50% 2.500000 2.500000 1.50000
60% 2.800000 2.800000 1.80000
70% 3.100000 3.100000 2.00000
80% 3.400000 3.400000 2.00000
90% 3.700000 3.700000 2.00000
max 4.000000 4.000000 2.00000
72 ms ± 11.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
0 1
count 8.000000 4.00000
mean 2.500000 1.50000
std 1.195229 0.57735
min 1.000000 1.00000
0% 1.000000 1.00000
10% 1.000000 1.00000
20% 1.400000 1.00000
30% 2.000000 1.00000
40% 2.000000 1.20000
50% 2.500000 1.50000
60% 3.000000 1.80000
70% 3.000000 2.00000
80% 3.600000 2.00000
90% 4.000000 2.00000
max 4.000000 2.00000
62.4 ms ± 565 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [9]:
Out[9]:
Start 2018-01-01 00:00:00
End 2018-01-05 00:00:00
Period 5 days 00:00:00
Count 4
Mean 2.5
Std 1.290994
Min 1.0
Median 2.5
Max 4.0
Min Index 2018-01-01 00:00:00
Max Index 2018-01-04 00:00:00
Name: a, dtype: object
5.7 ms ± 193 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Start 2018-01-01 00:00:00
End 2018-01-05 00:00:00
Period 5 days 00:00:00
Count 4.0
Mean 2.166667
Std 1.053113
Min 1.0
Median 2.166667
Max 3.333333
Name: agg_func_mean, dtype: object
/Users/olegpolakow/miniconda3/lib/python3.7/site-packages/ipykernel_launcher.py:4: UserWarning: Metric 'idx_min' returned multiple values despite having no aggregation function
after removing the cwd from sys.path.
/Users/olegpolakow/miniconda3/lib/python3.7/site-packages/ipykernel_launcher.py:4: UserWarning: Metric 'idx_max' returned multiple values despite having no aggregation function
after removing the cwd from sys.path.
36.8 ms ± 754 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
Start 2018-01-01 00:00:00
End 2018-01-05 00:00:00
Period 5 days 00:00:00
Value Counts: test_1.0 1.333333
Value Counts: test_2.0 1.333333
Value Counts: test_3.0 0.666667
Value Counts: test_4.0 0.666667
Value Counts: test_nan 1.0
Name: agg_func_mean, dtype: object
44.4 ms ± 458 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [35]:
Out[35]:
a b c
2018-01-01 0.0 NaN 0.0
2018-01-02 0.0 0.00 0.0
2018-01-03 0.0 -0.25 NaN
2018-01-04 0.0 -0.50 0.0
2018-01-05 NaN -0.75 -0.5
36.3 ms ± 399 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
a b c
2018-01-01 0.0 NaN 0.0
2018-01-02 0.0 0.00 0.0
2018-01-03 0.0 -0.25 NaN
2018-01-04 0.0 -0.50 0.0
2018-01-05 NaN -0.75 -0.5
/Users/olegpolakow/Documents/SourceTree/vectorbt/vectorbt/generic/accessors.py:1143: RuntimeWarning: invalid value encountered in true_divide
out = self.to_2d_array() / nb.expanding_max_nb(self.to_2d_array()) - 1
4.95 ms ± 616 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [36]:
Out[36]:
Drawdowns(**Config({
"wrapper": "<vectorbt.base.array_wrapper.ArrayWrapper object at 0x7fda7ee48400> of shape (5, 3)",
"records_arr": "<numpy.ndarray object at 0x7fd9f8227210> of shape (2,)",
"idx_field": "end_idx",
"ts": "<pandas.core.frame.DataFrame object at 0x7fda7db4a278> of shape (5, 3)"
}))
7.11 ms ± 62.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [37]:
Out[37]:
[1. 2. 3. 4. 4. 3. 2. 1. 1. 2. 2. 1.]
[0 0 0 0 1 1 1 1 2 2 2 2]
[0 1 2 3 1 2 3 4 0 1 3 4]
a 2.5
b 2.5
c 1.5
Name: mean, dtype: float32 a 2.5
b 2.5
c 1.5
Name: mean, dtype: float64
13.5 ms ± 611 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
[ 1. 2. 3. 4. nan nan 4. 3. 2. 1. 1. 2. nan 2. 1.]
[0 0 0 0 0 1 1 1 1 1 2 2 2 2 2]
[0 1 2 3 4 0 1 2 3 4 0 1 2 3 4]
a 2.5
b 2.5
c 1.5
Name: mean, dtype: float32 a 2.5
b 2.5
c 1.5
Name: mean, dtype: float64
12.6 ms ± 403 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [38]:
Out[38]:
split_idx 0 1
0 1.0 4.0
1 2.0 NaN
19 ms ± 506 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
split_idx 0 1
a b c a b c
0 1.0 NaN 1.0 4.0 2.0 2.0
1 2.0 4.0 2.0 NaN 1.0 1.0
26.8 ms ± 575 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
split_idx 0 1 2 3
0 1.0 2.0 3.0 4.0
1 2.0 3.0 4.0 NaN
153 ms ± 12.4 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
split_idx 0 1 2 3
a b c a b c a b c a b c
0 1.0 NaN 1.0 2.0 4.0 2.0 3.0 3.0 NaN 4.0 2.0 2.0
1 2.0 4.0 2.0 3.0 3.0 NaN 4.0 2.0 2.0 NaN 1.0 1.0
874 ms ± 82.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
split_idx 0 1
a b c a b c
0 1.0 NaN 1.0 2.0 4.0 2.0
1 2.0 4.0 2.0 3.0 3.0 NaN
2 3.0 3.0 NaN 4.0 2.0 2.0
3 4.0 2.0 2.0 NaN 1.0 1.0
split_idx 0 1
a b c a b c
0 1.0 NaN 1.0 2.0 4.0 2.0
1 2.0 4.0 2.0 3.0 3.0 NaN
2 3.0 3.0 NaN 4.0 2.0 2.0
In [39]:
Out[39]:
In [40]:
Out[40]:
In [41]:
Out[41]:
In [42]:
Out[42]:
In [43]:
Out[43]:
In [44]:
Out[44]:
In [45]:
Out[45]:
In [46]:
Out[46]:
In [47]:
Out[47]:
In [48]:
Out[48]:
1 1 0
2 2 1
3 3 2
dtype: int64
In [49]:
Out[49]:
0 1 2
0 0.0 NaN NaN
1 NaN 1.0 NaN
2 NaN NaN 2.0
In [50]:
Out[50]:
1 1 1 0
2 2 2 1
3 3 3 2
dtype: int64
/Users/olegpolakow/miniconda3/lib/python3.7/site-packages/ipykernel_launcher.py:4: UserWarning:
Data contains NaNs. Use `fillna` argument or `show` method in case of visualization issues.
In [51]:
Out[51]:
1 1 1 0
2 2 1
3 3 2
2 3 3 3
2 2 4
1 1 5
dtype: int64
In [52]:
Out[52]:
1 1 1 1 0
2 2 2 1
3 3 3 2
2 3 3 3 3
2 2 2 4
1 1 1 5
dtype: int64
/Users/olegpolakow/miniconda3/lib/python3.7/site-packages/ipykernel_launcher.py:4: UserWarning:
Data contains NaNs. Use `fillna` argument or `show` method in case of visualization issues.
In [53]:
Out[53]:
In [ ]: