Path: blob/master/esercizi/1.applicazioni-lineari-non-canoniche.tex
185 views
\subsection{Applicazione lineare con basi non canoniche}1$T: \mathbb{R}^2 \rightarrow \mathbb{R}^3 \quad T(x,y) = (2x, x-y, 2y)$23$\Base=\{(1,0), (1,1)\} \quad \Base'=\{(1,1,0),(0,1,1),(0,0,2)\}$45$T(1,0) = (2, 1, 0)_{|\Case} = (2, -1, 1/2)_{|\Base'}$67$T(1,1) = (2, 0, 2)_{|\Case} = (2, -2, 2)_{|\Base'}$89$10M = \left[11\arraycolsep=2.0pt\def\arraystretch{1.0}12\begin{array}{@{}cc@{}}132 & 2 \\14-1 & -2 \\151/2 & 2 \\16\end{array}17\right]18$19\begin{tabular}{l}20\emph{Esempio} \\21$T_{|\Case}(0,1) = T_{|\Base}(-1,1) = M \cdot (-1,1)_{|\Base} =$ \\22$(0,-1,3/2)_{|\Base'} = (0,-1,2)_{|\Case}$ \\23\end{tabular}2425$\ker f = \begin{cases}262x+2y = 0 \\[-0.3em]27-x-2y = 0 \\[-0.3em]28x/2+2y = 0 \\29\end{cases} = \{\vec{0}\}$ (iniettiva)3031$|\Imm f| = 2$ (th. nullità più rango)3233$\Imm f = \Col M = t (2, -1, 1/2) + s (2, -2, 2)$343536