Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
polimi-cheatsheet
GitHub Repository: polimi-cheatsheet/GAL-cheatsheet
Path: blob/master/esercizi/2.conica-centro.tex
185 views
1
\subsection{Conica a centro}
2
$\mathfrak{C}:\ 3x^2-2xy+3y^2-x-y-2=0$
3
$
4
A = \left[
5
\arraycolsep=2.0pt\def\arraystretch{1.0}
6
\begin{array}{@{}cc@{}}
7
3 & -1 \\
8
-1 & 3
9
\end{array}
10
\right]
11
\
12
B = \left[
13
\arraycolsep=2.0pt\def\arraystretch{1.0}
14
\begin{array}{@{}ccc@{}}
15
3 & -1 & -1/2 \\
16
-1 & 3 & -1/2 \\
17
-1/2 & -1/2 & -2 \\
18
\end{array}
19
\right]
20
$
21
\begin{tabular}{l}
22
$I_1 = \tr A = 6$ \\
23
$I_2 = \det A = 8$ \\
24
$I_3 = \det B = -18$
25
\end{tabular}
26
27
$I_2 \neq 0 \Rightarrow$ conica a centro. $I_1 I_3 < 0 \Rightarrow$ ellisse reale
28
29
Calcolo il centro che soddisfa $A \vec{v} = -\vec{b}$
30
31
$
32
\left[
33
\arraycolsep=2.0pt\def\arraystretch{1.0}
34
\begin{array}{@{}cc|c@{}}
35
3 & -1 & 1/2 \\
36
-1 & 3 & 1/2
37
\end{array}
38
\right]
39
\rightarrow
40
\left[
41
\arraycolsep=2.0pt\def\arraystretch{1.0}
42
\begin{array}{@{}cc|c@{}}
43
3 & -1 & 1/2 \\
44
0 & 8/3 & 2/3
45
\end{array}
46
\right]
47
\Rightarrow
48
O'_{|\Base} = \vec{v} =
49
\begin{bmatrix}
50
1/4 \\[-0.3em]
51
1/4 \\
52
\end{bmatrix}
53
$
54
55
%Calcolo autospazi di $A$ (autovettori sono paralleli assi di %$\mathfrak{C}$)
56
$p(\lambda) = \det(A-\lambda I) = (2-\lambda)(4-\lambda)$
57
$\ \Rightarrow \lambda_1 = 2, \lambda_2 = 4$
58
$V_2 = \Lin
59
\begin{bmatrix}
60
1 \\[-0.3em]
61
1 \\
62
\end{bmatrix}
63
= \Lin
64
\begin{bmatrix}
65
1/\sqrt{2} \\[-0.3em]
66
1/\sqrt{2} \\
67
\end{bmatrix}
68
\quad
69
V_4 = \Lin
70
\begin{bmatrix}
71
-1 \\[-0.3em]
72
1 \\
73
\end{bmatrix}
74
= \Lin
75
\begin{bmatrix}
76
-1/\sqrt{2} \\[-0.3em]
77
1/\sqrt{2} \\
78
\end{bmatrix}
79
$
80
81
U ortogonale che diagonalizza A ($\det U = 1$ e $U$ ortonormale, ovvero descrive una rotazione)
82
$
83
\begin{bmatrix}
84
x \\[-0.3em]
85
y \\
86
\end{bmatrix}
87
= U
88
\begin{bmatrix}
89
x' \\[-0.3em]
90
y' \\
91
\end{bmatrix}
92
+ \vec{v}=
93
\left[
94
\arraycolsep=2.0pt\def\arraystretch{1.0}
95
\begin{array}{@{}cc@{}}
96
1/\sqrt{2} & -1/\sqrt{2} \\
97
1/\sqrt{2} & 1/\sqrt{2}
98
\end{array}
99
\right]
100
\begin{bmatrix}
101
x' \\[-0.3em]
102
y' \\
103
\end{bmatrix}
104
+
105
\begin{bmatrix}
106
1/4 \\[-0.3em]
107
1/4 \\
108
\end{bmatrix}
109
$
110
111
Essendo un ellisse: $\lambda_1x'^2 + \lambda_2y'^2 + c = 2x'^2 + 4y'^2 + c = 0$
112
$
113
B' = \left[
114
\arraycolsep=2.0pt\def\arraystretch{1.0}
115
\begin{array}{@{}ccc@{}}
116
2 & 0 & 0 \\
117
0 & 4 & 0 \\
118
0 & 0 & c \\
119
\end{array}
120
\right]
121
$
122
\begin{tabular}{l}
123
$\Rightarrow I_3 = \det B' = 8c = \det B = -18$ \\
124
$\Rightarrow c = -9/4$
125
\end{tabular}
126
$\Rightarrow \mathfrak{C'}:\ 2x'^2 + 4y'^2 -9/4 = 0$
127
$\Rightarrow \mathfrak{C'}:\ \frac{8}{9}x'^2 + \frac{16}{9}y'^2 = 1$
128
129