Path: blob/master/esercizi/2.conica-centro.tex
185 views
\subsection{Conica a centro}1$\mathfrak{C}:\ 3x^2-2xy+3y^2-x-y-2=0$2$3A = \left[4\arraycolsep=2.0pt\def\arraystretch{1.0}5\begin{array}{@{}cc@{}}63 & -1 \\7-1 & 38\end{array}9\right]10\11B = \left[12\arraycolsep=2.0pt\def\arraystretch{1.0}13\begin{array}{@{}ccc@{}}143 & -1 & -1/2 \\15-1 & 3 & -1/2 \\16-1/2 & -1/2 & -2 \\17\end{array}18\right]19$20\begin{tabular}{l}21$I_1 = \tr A = 6$ \\22$I_2 = \det A = 8$ \\23$I_3 = \det B = -18$24\end{tabular}2526$I_2 \neq 0 \Rightarrow$ conica a centro. $I_1 I_3 < 0 \Rightarrow$ ellisse reale2728Calcolo il centro che soddisfa $A \vec{v} = -\vec{b}$2930$31\left[32\arraycolsep=2.0pt\def\arraystretch{1.0}33\begin{array}{@{}cc|c@{}}343 & -1 & 1/2 \\35-1 & 3 & 1/236\end{array}37\right]38\rightarrow39\left[40\arraycolsep=2.0pt\def\arraystretch{1.0}41\begin{array}{@{}cc|c@{}}423 & -1 & 1/2 \\430 & 8/3 & 2/344\end{array}45\right]46\Rightarrow47O'_{|\Base} = \vec{v} =48\begin{bmatrix}491/4 \\[-0.3em]501/4 \\51\end{bmatrix}52$5354%Calcolo autospazi di $A$ (autovettori sono paralleli assi di %$\mathfrak{C}$)55$p(\lambda) = \det(A-\lambda I) = (2-\lambda)(4-\lambda)$56$\ \Rightarrow \lambda_1 = 2, \lambda_2 = 4$57$V_2 = \Lin58\begin{bmatrix}591 \\[-0.3em]601 \\61\end{bmatrix}62= \Lin63\begin{bmatrix}641/\sqrt{2} \\[-0.3em]651/\sqrt{2} \\66\end{bmatrix}67\quad68V_4 = \Lin69\begin{bmatrix}70-1 \\[-0.3em]711 \\72\end{bmatrix}73= \Lin74\begin{bmatrix}75-1/\sqrt{2} \\[-0.3em]761/\sqrt{2} \\77\end{bmatrix}78$7980U ortogonale che diagonalizza A ($\det U = 1$ e $U$ ortonormale, ovvero descrive una rotazione)81$82\begin{bmatrix}83x \\[-0.3em]84y \\85\end{bmatrix}86= U87\begin{bmatrix}88x' \\[-0.3em]89y' \\90\end{bmatrix}91+ \vec{v}=92\left[93\arraycolsep=2.0pt\def\arraystretch{1.0}94\begin{array}{@{}cc@{}}951/\sqrt{2} & -1/\sqrt{2} \\961/\sqrt{2} & 1/\sqrt{2}97\end{array}98\right]99\begin{bmatrix}100x' \\[-0.3em]101y' \\102\end{bmatrix}103+104\begin{bmatrix}1051/4 \\[-0.3em]1061/4 \\107\end{bmatrix}108$109110Essendo un ellisse: $\lambda_1x'^2 + \lambda_2y'^2 + c = 2x'^2 + 4y'^2 + c = 0$111$112B' = \left[113\arraycolsep=2.0pt\def\arraystretch{1.0}114\begin{array}{@{}ccc@{}}1152 & 0 & 0 \\1160 & 4 & 0 \\1170 & 0 & c \\118\end{array}119\right]120$121\begin{tabular}{l}122$\Rightarrow I_3 = \det B' = 8c = \det B = -18$ \\123$\Rightarrow c = -9/4$124\end{tabular}125$\Rightarrow \mathfrak{C'}:\ 2x'^2 + 4y'^2 -9/4 = 0$126$\Rightarrow \mathfrak{C'}:\ \frac{8}{9}x'^2 + \frac{16}{9}y'^2 = 1$127128129