Path: blob/master/esercizi/2.conica-non-centro.tex
185 views
\subsection{Conica non a centro}1$\mathfrak{C}:\ x^2+4xy+4y^2-10\sqrt{5}x=0$23%$4%A = \left[5% \arraycolsep=2.0pt\def\arraystretch{1.0}6% \begin{array}{@{}cc@{}}7% 1 & 2 \\8% 2 & 49% \end{array}10%\right]11%\12%B = \left[13% \arraycolsep=2.0pt\def\arraystretch{1.0}14% \begin{array}{@{}ccc@{}}15% 1 & 2 & -5\sqrt{5} \\16% 2 & 4 & 0 \\17% -5\sqrt{5} & 0 & 0 \\18% \end{array}19%\right]20%$21\begin{tabular}{l}22$I_1 = \tr A = 5$ \\23$I_2 = \det A = 0$ \\24$I_3 = \det B = -500$25\end{tabular}26\begin{tabular}{l}27$I_2 = 0 \Rightarrow$ conica non a centro. \\28$I_3 \neq 0 \Rightarrow$ parabola29\end{tabular}3031%Calcolo autospazi di $A$ \\32$p(\lambda) = \det(A-\lambda I) = -\lambda(5-\lambda)$33$\ \Rightarrow \lambda_1 = 0, \lambda_2 = 5$34$V_0 %= \Lin35%\begin{bmatrix}36% 2 \\[-0.3em]37% -1 \\38%\end{bmatrix}39= \Lin40\begin{bmatrix}412/\sqrt{5} \\[-0.3em]42-1/\sqrt{5} \\43\end{bmatrix}44\quad45V_5 %= \Lin46%\begin{bmatrix}47% 1 \\[-0.3em]48% 2 \\49%\end{bmatrix}50= \Lin51\begin{bmatrix}521/\sqrt{5} \\[-0.3em]532/\sqrt{5} \\54\end{bmatrix}55$56\quad57%Trovo la matrice U ortogonale che diagonalizza A e eseguo rotazione:58%(nota che $U \in SO(2) \Rightarrow \det U = 1$ e $U$ ortonormale)59$60%\begin{bmatrix}61% x \\[-0.3em]62% y \\63%\end{bmatrix}64%= U65%\begin{bmatrix}66% \tilde{x} \\[-0.3em]67% \tilde{y} \\68%\end{bmatrix}69U =70\left[71\arraycolsep=2.0pt\def\arraystretch{1.0}72\begin{array}{@{}cc@{}}732/\sqrt{5} & 1/\sqrt{5} \\74-1/\sqrt{5} & 2/\sqrt{5}75\end{array}76\right]77%\begin{bmatrix}78% \tilde{x} \\[-0.3em]79% \tilde{y} \\80%\end{bmatrix}81$ \\82$83\Rightarrow \tilde{A} = U^TAU = \left[84\arraycolsep=2.0pt\def\arraystretch{1.0}85\begin{array}{@{}cc@{}}860 & 0 \\870 & 588\end{array}89\right]90,\quad91\tilde{\vec{b}} = U^T\vec{b} = \begin{bmatrix}92-10 \\[-0.3em]93-5 \\94\end{bmatrix}95,\quad96\tilde{c} = c97$ \\98$\Rightarrow \tilde{\mathfrak{C}}:\ 5\tilde{y}^2 - 20\tilde{x} - 10\tilde{y} = 0$ %e completamento dei quadrati99$\Rightarrow \tilde{\mathfrak{C}}:\ 5(\tilde{y}-1)^2 - 20(\tilde{x}+1/4) = 0$ \\100$\Rightarrow101\begin{bmatrix}102x \\[-0.3em]103y \\104\end{bmatrix}105= U106\begin{bmatrix}107\tilde{x} \\[-0.3em]108\tilde{y} \\109\end{bmatrix}110= U111\begin{bmatrix}112x'-1/4 \\[-0.3em]113y'+1 \\114\end{bmatrix}115= U116\begin{bmatrix}117x' \\[-0.3em]118y' \\119\end{bmatrix}120+121\begin{bmatrix}1221/(2\sqrt{5}) \\[-0.3em]1239/(4\sqrt{5}) \\124\end{bmatrix}125$126127$\Rightarrow \mathfrak{C}':\ 5y'^2 - 20x' = 0$128$\Rightarrow \mathfrak{C}':\ y'^2 - 4x' = 0$129130131