Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
polimi-cheatsheet
GitHub Repository: polimi-cheatsheet/GAL-cheatsheet
Path: blob/master/esercizi/2.conica-non-centro.tex
185 views
1
\subsection{Conica non a centro}
2
$\mathfrak{C}:\ x^2+4xy+4y^2-10\sqrt{5}x=0$
3
4
%$
5
%A = \left[
6
% \arraycolsep=2.0pt\def\arraystretch{1.0}
7
% \begin{array}{@{}cc@{}}
8
% 1 & 2 \\
9
% 2 & 4
10
% \end{array}
11
%\right]
12
%\
13
%B = \left[
14
% \arraycolsep=2.0pt\def\arraystretch{1.0}
15
% \begin{array}{@{}ccc@{}}
16
% 1 & 2 & -5\sqrt{5} \\
17
% 2 & 4 & 0 \\
18
% -5\sqrt{5} & 0 & 0 \\
19
% \end{array}
20
%\right]
21
%$
22
\begin{tabular}{l}
23
$I_1 = \tr A = 5$ \\
24
$I_2 = \det A = 0$ \\
25
$I_3 = \det B = -500$
26
\end{tabular}
27
\begin{tabular}{l}
28
$I_2 = 0 \Rightarrow$ conica non a centro. \\
29
$I_3 \neq 0 \Rightarrow$ parabola
30
\end{tabular}
31
32
%Calcolo autospazi di $A$ \\
33
$p(\lambda) = \det(A-\lambda I) = -\lambda(5-\lambda)$
34
$\ \Rightarrow \lambda_1 = 0, \lambda_2 = 5$
35
$V_0 %= \Lin
36
%\begin{bmatrix}
37
% 2 \\[-0.3em]
38
% -1 \\
39
%\end{bmatrix}
40
= \Lin
41
\begin{bmatrix}
42
2/\sqrt{5} \\[-0.3em]
43
-1/\sqrt{5} \\
44
\end{bmatrix}
45
\quad
46
V_5 %= \Lin
47
%\begin{bmatrix}
48
% 1 \\[-0.3em]
49
% 2 \\
50
%\end{bmatrix}
51
= \Lin
52
\begin{bmatrix}
53
1/\sqrt{5} \\[-0.3em]
54
2/\sqrt{5} \\
55
\end{bmatrix}
56
$
57
\quad
58
%Trovo la matrice U ortogonale che diagonalizza A e eseguo rotazione:
59
%(nota che $U \in SO(2) \Rightarrow \det U = 1$ e $U$ ortonormale)
60
$
61
%\begin{bmatrix}
62
% x \\[-0.3em]
63
% y \\
64
%\end{bmatrix}
65
%= U
66
%\begin{bmatrix}
67
% \tilde{x} \\[-0.3em]
68
% \tilde{y} \\
69
%\end{bmatrix}
70
U =
71
\left[
72
\arraycolsep=2.0pt\def\arraystretch{1.0}
73
\begin{array}{@{}cc@{}}
74
2/\sqrt{5} & 1/\sqrt{5} \\
75
-1/\sqrt{5} & 2/\sqrt{5}
76
\end{array}
77
\right]
78
%\begin{bmatrix}
79
% \tilde{x} \\[-0.3em]
80
% \tilde{y} \\
81
%\end{bmatrix}
82
$ \\
83
$
84
\Rightarrow \tilde{A} = U^TAU = \left[
85
\arraycolsep=2.0pt\def\arraystretch{1.0}
86
\begin{array}{@{}cc@{}}
87
0 & 0 \\
88
0 & 5
89
\end{array}
90
\right]
91
,\quad
92
\tilde{\vec{b}} = U^T\vec{b} = \begin{bmatrix}
93
-10 \\[-0.3em]
94
-5 \\
95
\end{bmatrix}
96
,\quad
97
\tilde{c} = c
98
$ \\
99
$\Rightarrow \tilde{\mathfrak{C}}:\ 5\tilde{y}^2 - 20\tilde{x} - 10\tilde{y} = 0$ %e completamento dei quadrati
100
$\Rightarrow \tilde{\mathfrak{C}}:\ 5(\tilde{y}-1)^2 - 20(\tilde{x}+1/4) = 0$ \\
101
$\Rightarrow
102
\begin{bmatrix}
103
x \\[-0.3em]
104
y \\
105
\end{bmatrix}
106
= U
107
\begin{bmatrix}
108
\tilde{x} \\[-0.3em]
109
\tilde{y} \\
110
\end{bmatrix}
111
= U
112
\begin{bmatrix}
113
x'-1/4 \\[-0.3em]
114
y'+1 \\
115
\end{bmatrix}
116
= U
117
\begin{bmatrix}
118
x' \\[-0.3em]
119
y' \\
120
\end{bmatrix}
121
+
122
\begin{bmatrix}
123
1/(2\sqrt{5}) \\[-0.3em]
124
9/(4\sqrt{5}) \\
125
\end{bmatrix}
126
$
127
128
$\Rightarrow \mathfrak{C}':\ 5y'^2 - 20x' = 0$
129
$\Rightarrow \mathfrak{C}':\ y'^2 - 4x' = 0$
130
131