Path: blob/master/osu.Game.Rulesets.Osu/Utils/OsuHitObjectGenerationUtils_Reposition.cs
2264 views
// Copyright (c) ppy Pty Ltd <[email protected]>. Licensed under the MIT Licence. // See the LICENCE file in the repository root for full licence text. using System; using System.Collections.Generic; using System.Linq; using osu.Framework.Graphics.Primitives; using osu.Framework.Utils; using osu.Game.Rulesets.Osu.Objects; using osu.Game.Rulesets.Osu.UI; using osuTK; namespace osu.Game.Rulesets.Osu.Utils { public static partial class OsuHitObjectGenerationUtils { /// <summary> /// Number of previous hitobjects to be shifted together when an object is being moved. /// </summary> private const int preceding_hitobjects_to_shift = 10; private static readonly Vector2 playfield_centre = OsuPlayfield.BASE_SIZE / 2; /// <summary> /// Generate a list of <see cref="ObjectPositionInfo"/>s containing information for how the given list of /// <see cref="OsuHitObject"/>s are positioned. /// </summary> /// <param name="hitObjects">A list of <see cref="OsuHitObject"/>s to process.</param> /// <returns>A list of <see cref="ObjectPositionInfo"/>s describing how each hit object is positioned relative to the previous one.</returns> public static List<ObjectPositionInfo> GeneratePositionInfos(IEnumerable<OsuHitObject> hitObjects) { var positionInfos = new List<ObjectPositionInfo>(); Vector2 previousPosition = playfield_centre; float previousAngle = 0; foreach (OsuHitObject hitObject in hitObjects) { Vector2 relativePosition = hitObject.Position - previousPosition; float absoluteAngle = MathF.Atan2(relativePosition.Y, relativePosition.X); float relativeAngle = absoluteAngle - previousAngle; ObjectPositionInfo positionInfo; positionInfos.Add(positionInfo = new ObjectPositionInfo(hitObject) { RelativeAngle = relativeAngle, DistanceFromPrevious = relativePosition.Length }); if (hitObject is Slider slider) { float absoluteRotation = getSliderRotation(slider); positionInfo.Rotation = absoluteRotation - absoluteAngle; absoluteAngle = absoluteRotation; } previousPosition = hitObject.EndPosition; previousAngle = absoluteAngle; } return positionInfos; } /// <summary> /// Reposition the hit objects according to the information in <paramref name="objectPositionInfos"/>. /// </summary> /// <param name="objectPositionInfos">Position information for each hit object.</param> /// <returns>The repositioned hit objects.</returns> public static List<OsuHitObject> RepositionHitObjects(IEnumerable<ObjectPositionInfo> objectPositionInfos) { List<WorkingObject> workingObjects = objectPositionInfos.Select(o => new WorkingObject(o)).ToList(); WorkingObject? previous = null; for (int i = 0; i < workingObjects.Count; i++) { var current = workingObjects[i]; var hitObject = current.HitObject; if (hitObject is Spinner) { previous = current; continue; } computeModifiedPosition(current, previous, i > 1 ? workingObjects[i - 2] : null); // Move hit objects back into the playfield if they are outside of it Vector2 shift = Vector2.Zero; switch (hitObject) { case HitCircle: shift = clampHitCircleToPlayfield(current); break; case Slider: shift = clampSliderToPlayfield(current); break; } if (shift != Vector2.Zero) { var toBeShifted = new List<OsuHitObject>(); for (int j = i - 1; j >= i - preceding_hitobjects_to_shift && j >= 0; j--) { // only shift hit circles if (!(workingObjects[j].HitObject is HitCircle)) break; toBeShifted.Add(workingObjects[j].HitObject); } if (toBeShifted.Count > 0) applyDecreasingShift(toBeShifted, shift); } previous = current; } return workingObjects.Select(p => p.HitObject).ToList(); } /// <summary> /// Compute the modified position of a hit object while attempting to keep it inside the playfield. /// </summary> /// <param name="current">The <see cref="WorkingObject"/> representing the hit object to have the modified position computed for.</param> /// <param name="previous">The <see cref="WorkingObject"/> representing the hit object immediately preceding the current one.</param> /// <param name="beforePrevious">The <see cref="WorkingObject"/> representing the hit object immediately preceding the <paramref name="previous"/> one.</param> private static void computeModifiedPosition(WorkingObject current, WorkingObject? previous, WorkingObject? beforePrevious) { float previousAbsoluteAngle = 0f; if (previous != null) { if (previous.HitObject is Slider s) { previousAbsoluteAngle = getSliderRotation(s); } else { Vector2 earliestPosition = beforePrevious?.HitObject.EndPosition ?? playfield_centre; Vector2 relativePosition = previous.HitObject.Position - earliestPosition; previousAbsoluteAngle = MathF.Atan2(relativePosition.Y, relativePosition.X); } } float absoluteAngle = previousAbsoluteAngle + current.PositionInfo.RelativeAngle; var posRelativeToPrev = new Vector2( current.PositionInfo.DistanceFromPrevious * MathF.Cos(absoluteAngle), current.PositionInfo.DistanceFromPrevious * MathF.Sin(absoluteAngle) ); Vector2 lastEndPosition = previous?.EndPositionModified ?? playfield_centre; posRelativeToPrev = RotateAwayFromEdge(lastEndPosition, posRelativeToPrev); current.PositionModified = lastEndPosition + posRelativeToPrev; if (!(current.HitObject is Slider slider)) return; absoluteAngle = MathF.Atan2(posRelativeToPrev.Y, posRelativeToPrev.X); Vector2 centreOfMassOriginal = calculateCentreOfMass(slider); Vector2 centreOfMassModified = rotateVector(centreOfMassOriginal, current.PositionInfo.Rotation + absoluteAngle - getSliderRotation(slider)); centreOfMassModified = RotateAwayFromEdge(current.PositionModified, centreOfMassModified); float relativeRotation = MathF.Atan2(centreOfMassModified.Y, centreOfMassModified.X) - MathF.Atan2(centreOfMassOriginal.Y, centreOfMassOriginal.X); if (!Precision.AlmostEquals(relativeRotation, 0)) RotateSlider(slider, relativeRotation); } /// <summary> /// Move the modified position of a <see cref="HitCircle"/> so that it fits inside the playfield. /// </summary> /// <returns>The deviation from the original modified position in order to fit within the playfield.</returns> private static Vector2 clampHitCircleToPlayfield(WorkingObject workingObject) { var previousPosition = workingObject.PositionModified; workingObject.EndPositionModified = workingObject.PositionModified = clampToPlayfieldWithPadding( workingObject.PositionModified, (float)workingObject.HitObject.Radius ); workingObject.HitObject.Position = workingObject.PositionModified; return workingObject.PositionModified - previousPosition; } /// <summary> /// Moves the <see cref="Slider"/> and all necessary nested <see cref="OsuHitObject"/>s into the <see cref="OsuPlayfield"/> if they aren't already. /// </summary> /// <returns>The deviation from the original modified position in order to fit within the playfield.</returns> private static Vector2 clampSliderToPlayfield(WorkingObject workingObject) { var slider = (Slider)workingObject.HitObject; var possibleMovementBounds = CalculatePossibleMovementBounds(slider); // The slider rotation applied in computeModifiedPosition might make it impossible to fit the slider into the playfield // For example, a long horizontal slider will be off-screen when rotated by 90 degrees // In this case, limit the rotation to either 0 or 180 degrees if (possibleMovementBounds.Width < 0 || possibleMovementBounds.Height < 0) { float currentRotation = getSliderRotation(slider); float diff1 = getAngleDifference(workingObject.RotationOriginal, currentRotation); float diff2 = getAngleDifference(workingObject.RotationOriginal + MathF.PI, currentRotation); if (diff1 < diff2) { RotateSlider(slider, workingObject.RotationOriginal - getSliderRotation(slider)); } else { RotateSlider(slider, workingObject.RotationOriginal + MathF.PI - getSliderRotation(slider)); } possibleMovementBounds = CalculatePossibleMovementBounds(slider); } var previousPosition = workingObject.PositionModified; // Clamp slider position to the placement area // If the slider is larger than the playfield, at least make sure that the head circle is inside the playfield float newX = possibleMovementBounds.Width < 0 ? Math.Clamp(possibleMovementBounds.Left, 0, OsuPlayfield.BASE_SIZE.X) : Math.Clamp(previousPosition.X, possibleMovementBounds.Left, possibleMovementBounds.Right); float newY = possibleMovementBounds.Height < 0 ? Math.Clamp(possibleMovementBounds.Top, 0, OsuPlayfield.BASE_SIZE.Y) : Math.Clamp(previousPosition.Y, possibleMovementBounds.Top, possibleMovementBounds.Bottom); slider.Position = workingObject.PositionModified = new Vector2(newX, newY); workingObject.EndPositionModified = slider.EndPosition; return workingObject.PositionModified - previousPosition; } /// <summary> /// Decreasingly shift a list of <see cref="OsuHitObject"/>s by a specified amount. /// The first item in the list is shifted by the largest amount, while the last item is shifted by the smallest amount. /// </summary> /// <param name="hitObjects">The list of hit objects to be shifted.</param> /// <param name="shift">The amount to be shifted.</param> private static void applyDecreasingShift(IList<OsuHitObject> hitObjects, Vector2 shift) { for (int i = 0; i < hitObjects.Count; i++) { var hitObject = hitObjects[i]; // The first object is shifted by a vector slightly smaller than shift // The last object is shifted by a vector slightly larger than zero Vector2 position = hitObject.Position + shift * ((hitObjects.Count - i) / (float)(hitObjects.Count + 1)); hitObject.Position = clampToPlayfieldWithPadding(position, (float)hitObject.Radius); } } /// <summary> /// Calculates a <see cref="RectangleF"/> which contains all of the possible movements of the slider (in relative X/Y coordinates) /// such that the entire slider is inside the playfield. /// </summary> /// <param name="slider">The <see cref="Slider"/> for which to calculate a movement bounding box.</param> /// <returns>A <see cref="RectangleF"/> which contains all of the possible movements of the slider such that the entire slider is inside the playfield.</returns> /// <remarks> /// If the slider is larger than the playfield, the returned <see cref="RectangleF"/> may have negative width/height. /// </remarks> public static RectangleF CalculatePossibleMovementBounds(Slider slider) { var pathPositions = new List<Vector2>(); slider.Path.GetPathToProgress(pathPositions, 0, 1); float minX = float.PositiveInfinity; float maxX = float.NegativeInfinity; float minY = float.PositiveInfinity; float maxY = float.NegativeInfinity; // Compute the bounding box of the slider. foreach (var pos in pathPositions) { minX = MathF.Min(minX, pos.X); maxX = MathF.Max(maxX, pos.X); minY = MathF.Min(minY, pos.Y); maxY = MathF.Max(maxY, pos.Y); } // Take the circle radius into account. float radius = (float)slider.Radius; minX -= radius; minY -= radius; maxX += radius; maxY += radius; // Given the bounding box of the slider (via min/max X/Y), // the amount that the slider can move to the left is minX (with the sign flipped, since positive X is to the right), // and the amount that it can move to the right is WIDTH - maxX. // Same calculation applies for the Y axis. float left = -minX; float right = OsuPlayfield.BASE_SIZE.X - maxX; float top = -minY; float bottom = OsuPlayfield.BASE_SIZE.Y - maxY; return new RectangleF(left, top, right - left, bottom - top); } /// <summary> /// Clamp a position to playfield, keeping a specified distance from the edges. /// </summary> /// <param name="position">The position to be clamped.</param> /// <param name="padding">The minimum distance allowed from playfield edges.</param> /// <returns>The clamped position.</returns> private static Vector2 clampToPlayfieldWithPadding(Vector2 position, float padding) { return new Vector2( Math.Clamp(position.X, padding, OsuPlayfield.BASE_SIZE.X - padding), Math.Clamp(position.Y, padding, OsuPlayfield.BASE_SIZE.Y - padding) ); } /// <summary> /// Estimate the centre of mass of a slider relative to its start position. /// </summary> /// <param name="slider">The slider to process.</param> /// <returns>The centre of mass of the slider.</returns> private static Vector2 calculateCentreOfMass(Slider slider) { const double sample_step = 50; // just sample the start and end positions if the slider is too short if (slider.Distance <= sample_step) { return Vector2.Divide(slider.Path.PositionAt(1), 2); } int count = 0; Vector2 sum = Vector2.Zero; double pathDistance = slider.Distance; for (double i = 0; i < pathDistance; i += sample_step) { sum += slider.Path.PositionAt(i / pathDistance); count++; } return sum / count; } /// <summary> /// Get the absolute rotation of a slider, defined as the angle from its start position to the end of its path. /// </summary> /// <param name="slider">The slider to process.</param> /// <returns>The angle in radians.</returns> private static float getSliderRotation(Slider slider) { var endPositionVector = slider.Path.PositionAt(1); return MathF.Atan2(endPositionVector.Y, endPositionVector.X); } /// <summary> /// Get the absolute difference between 2 angles measured in Radians. /// </summary> /// <param name="angle1">The first angle</param> /// <param name="angle2">The second angle</param> /// <returns>The absolute difference with interval <c>[0, MathF.PI)</c></returns> private static float getAngleDifference(float angle1, float angle2) { float diff = MathF.Abs(angle1 - angle2) % (MathF.PI * 2); return MathF.Min(diff, MathF.PI * 2 - diff); } public class ObjectPositionInfo { /// <summary> /// The jump angle from the previous hit object to this one, relative to the previous hit object's jump angle. /// </summary> /// <remarks> /// <see cref="RelativeAngle"/> of the first hit object in a beatmap represents the absolute angle from playfield center to the object. /// </remarks> /// <example> /// If <see cref="RelativeAngle"/> is 0, the player's cursor doesn't need to change its direction of movement when passing /// the previous object to reach this one. /// </example> public float RelativeAngle { get; set; } /// <summary> /// The jump distance from the previous hit object to this one. /// </summary> /// <remarks> /// <see cref="DistanceFromPrevious"/> of the first hit object in a beatmap is relative to the playfield center. /// </remarks> public float DistanceFromPrevious { get; set; } /// <summary> /// The rotation of the hit object, relative to its jump angle. /// For sliders, this is defined as the angle from the slider's start position to the end of its path, relative to its jump angle. /// For hit circles and spinners, this property is ignored. /// </summary> public float Rotation { get; set; } /// <summary> /// The hit object associated with this <see cref="ObjectPositionInfo"/>. /// </summary> public OsuHitObject HitObject { get; } public ObjectPositionInfo(OsuHitObject hitObject) { HitObject = hitObject; } } private class WorkingObject { public float RotationOriginal { get; } public Vector2 PositionModified { get; set; } public Vector2 EndPositionModified { get; set; } public ObjectPositionInfo PositionInfo { get; } public OsuHitObject HitObject => PositionInfo.HitObject; public WorkingObject(ObjectPositionInfo positionInfo) { PositionInfo = positionInfo; RotationOriginal = HitObject is Slider slider ? getSliderRotation(slider) : 0; PositionModified = HitObject.Position; EndPositionModified = HitObject.EndPosition; } } } }