// Copyright (c) ppy Pty Ltd <[email protected]>. Licensed under the MIT Licence. // See the LICENCE file in the repository root for full licence text. #nullable disable using osu.Framework.Graphics; using osu.Framework.Utils; using osuTK; using osuTK.Graphics; using System; using osu.Framework.Graphics.Shaders; using osu.Framework.Graphics.Textures; using osu.Framework.Graphics.Colour; using osu.Framework.Graphics.Primitives; using osu.Framework.Allocation; using System.Collections.Generic; using osu.Framework.Graphics.Rendering; using osu.Framework.Lists; using osu.Framework.Bindables; namespace osu.Game.Graphics.Backgrounds { public partial class Triangles : Drawable { private const float triangle_size = 100; private const float base_velocity = 50; /// <summary> /// sqrt(3) / 2 /// </summary> private const float equilateral_triangle_ratio = 0.866f; private Color4 colourLight = Color4.White; public Color4 ColourLight { get => colourLight; set { if (colourLight == value) return; colourLight = value; updateColours(); } } private Color4 colourDark = Color4.Black; public Color4 ColourDark { get => colourDark; set { if (colourDark == value) return; colourDark = value; updateColours(); } } /// <summary> /// Whether we should create new triangles as others expire. /// </summary> protected virtual bool CreateNewTriangles => true; /// <summary> /// The amount of triangles we want compared to the default distribution. /// </summary> protected virtual float SpawnRatio => 1; private readonly BindableFloat triangleScale = new BindableFloat(1f); public float TriangleScale { get => triangleScale.Value; set => triangleScale.Value = value; } /// <summary> /// Controls on which <see cref="Axes"/> the portion of triangles that falls within this <see cref="Drawable"/>'s /// shape is drawn to the screen. Default is Axes.Both. /// </summary> public Axes ClampAxes { get; set; } = Axes.Both; /// <summary> /// Whether we should drop-off alpha values of triangles more quickly to improve /// the visual appearance of fading. This defaults to on as it is generally more /// aesthetically pleasing, but should be turned off in buffered containers. /// </summary> public bool HideAlphaDiscrepancies = true; /// <summary> /// The relative velocity of the triangles. Default is 1. /// </summary> public float Velocity = 1; private readonly SortedList<TriangleParticle> parts = new SortedList<TriangleParticle>(Comparer<TriangleParticle>.Default); private Random stableRandom; private IShader shader; private Texture texture; /// <summary> /// Construct a new triangle visualisation. /// </summary> /// <param name="seed">An optional seed to stabilise random positions / attributes. Note that this does not guarantee stable playback when seeking in time.</param> public Triangles(int? seed = null) { if (seed != null) stableRandom = new Random(seed.Value); } [BackgroundDependencyLoader] private void load(IRenderer renderer, ShaderManager shaders) { texture = renderer.WhitePixel; shader = shaders.Load(VertexShaderDescriptor.TEXTURE_2, "TriangleBorder"); } protected override void LoadComplete() { base.LoadComplete(); triangleScale.BindValueChanged(_ => Reset(), true); } protected override void Update() { base.Update(); if (CreateNewTriangles) addTriangles(false); float adjustedAlpha = HideAlphaDiscrepancies // Cubically scale alpha to make it drop off more sharply. ? MathF.Pow(DrawColourInfo.Colour.AverageColour.Linear.A, 3) : 1; float elapsedSeconds = (float)Time.Elapsed / 1000; if (elapsedSeconds == 0) return; // Since position is relative, the velocity needs to scale inversely with DrawHeight. // Since we will later multiply by the scale of individual triangles we normalize by // dividing by triangleScale. float movedDistance = -elapsedSeconds * Velocity * base_velocity / (DrawHeight * TriangleScale); for (int i = 0; i < parts.Count; i++) { TriangleParticle newParticle = parts[i]; // Scale moved distance by the size of the triangle. Smaller triangles should move more slowly. newParticle.Position.Y += Math.Max(0.5f, parts[i].Scale) * movedDistance; newParticle.Colour.A = adjustedAlpha; parts[i] = newParticle; float bottomPos = parts[i].Position.Y + triangle_size * parts[i].Scale * equilateral_triangle_ratio / DrawHeight; if (bottomPos < 0) parts.RemoveAt(i); } Invalidate(Invalidation.DrawNode); } /// <summary> /// Clears and re-initialises triangles according to a given seed. /// </summary> /// <param name="seed">An optional seed to stabilise random positions / attributes. Note that this does not guarantee stable playback when seeking in time.</param> public void Reset(int? seed = null) { if (seed != null) stableRandom = new Random(seed.Value); parts.Clear(); addTriangles(true); } protected int AimCount { get; private set; } private void addTriangles(bool randomY) { // Limited by the maximum size of QuadVertexBuffer for safety. const int max_triangles = ushort.MaxValue / (IRenderer.VERTICES_PER_QUAD + 2); AimCount = (int)Math.Min(max_triangles, DrawWidth * DrawHeight * 0.002f / (TriangleScale * TriangleScale) * SpawnRatio); int currentCount = parts.Count; if (AimCount - currentCount == 0) return; for (int i = 0; i < AimCount - currentCount; i++) parts.Add(createTriangle(randomY)); Invalidate(Invalidation.DrawNode); } private TriangleParticle createTriangle(bool randomY) { TriangleParticle particle = CreateTriangle(); particle.Position = getRandomPosition(randomY, particle.Scale); particle.ColourShade = nextRandom(); particle.Colour = CreateTriangleShade(particle.ColourShade); return particle; } private Vector2 getRandomPosition(bool randomY, float scale) { float y = 1; if (randomY) { // since triangles are drawn from the top - allow them to be positioned a bit above the screen float maxOffset = triangle_size * scale * equilateral_triangle_ratio / DrawHeight; y = Interpolation.ValueAt(nextRandom(), -maxOffset, 1f, 0f, 1f); } return new Vector2(nextRandom(), y); } /// <summary> /// Creates a triangle particle with a random scale. /// </summary> /// <returns>The triangle particle.</returns> protected virtual TriangleParticle CreateTriangle() { const float std_dev = 0.16f; const float mean = 0.5f; float u1 = 1 - nextRandom(); //uniform(0,1] random floats float u2 = 1 - nextRandom(); float randStdNormal = (float)(Math.Sqrt(-2.0 * Math.Log(u1)) * Math.Sin(2.0 * Math.PI * u2)); // random normal(0,1) float scale = Math.Max(TriangleScale * (mean + std_dev * randStdNormal), 0.1f); // random normal(mean,stdDev^2) return new TriangleParticle { Scale = scale }; } /// <summary> /// Creates a shade of colour for the triangles. /// </summary> /// <returns>The colour.</returns> protected virtual Color4 CreateTriangleShade(float shade) => Interpolation.ValueAt(shade, colourDark, colourLight, 0, 1); private void updateColours() { for (int i = 0; i < parts.Count; i++) { TriangleParticle newParticle = parts[i]; newParticle.Colour = CreateTriangleShade(newParticle.ColourShade); parts[i] = newParticle; } } private float nextRandom() => (float)(stableRandom?.NextDouble() ?? RNG.NextSingle()); protected override DrawNode CreateDrawNode() => new TrianglesDrawNode(this); private class TrianglesDrawNode : DrawNode { private const float fill = 1f; protected new Triangles Source => (Triangles)base.Source; private IShader shader; private Texture texture; private Axes clampAxes; private readonly List<TriangleParticle> parts = new List<TriangleParticle>(); private readonly Vector2 triangleSize = new Vector2(1f, equilateral_triangle_ratio) * triangle_size; private Vector2 size; public TrianglesDrawNode(Triangles source) : base(source) { } public override void ApplyState() { base.ApplyState(); shader = Source.shader; texture = Source.texture; size = Source.DrawSize; clampAxes = Source.ClampAxes; parts.Clear(); parts.AddRange(Source.parts); } private IUniformBuffer<TriangleBorderData> borderDataBuffer; protected override void Draw(IRenderer renderer) { base.Draw(renderer); borderDataBuffer ??= renderer.CreateUniformBuffer<TriangleBorderData>(); borderDataBuffer.Data = borderDataBuffer.Data with { Thickness = fill, // Due to triangles having various sizes we would need to set a different "TexelSize" value for each of them, which is insanely expensive, thus we should use one single value. // TexelSize computed for an average triangle (size 100) will result in big triangles becoming blurry, so we may just use 0 for all of them. TexelSize = 0 }; shader.Bind(); shader.BindUniformBlock(@"m_BorderData", borderDataBuffer); foreach (TriangleParticle particle in parts) { Vector2 relativeSize = Vector2.Divide(triangleSize * particle.Scale, size); Vector2 topLeft = particle.Position - new Vector2(relativeSize.X * 0.5f, 0f); Quad triangleQuad = getClampedQuad(clampAxes, topLeft, relativeSize); var drawQuad = new Quad( Vector2Extensions.Transform(triangleQuad.TopLeft * size, DrawInfo.Matrix), Vector2Extensions.Transform(triangleQuad.TopRight * size, DrawInfo.Matrix), Vector2Extensions.Transform(triangleQuad.BottomLeft * size, DrawInfo.Matrix), Vector2Extensions.Transform(triangleQuad.BottomRight * size, DrawInfo.Matrix) ); ColourInfo colourInfo = DrawColourInfo.Colour; colourInfo.ApplyChild(particle.Colour); RectangleF textureCoords = new RectangleF( triangleQuad.TopLeft.X - topLeft.X, triangleQuad.TopLeft.Y - topLeft.Y, triangleQuad.Width, triangleQuad.Height ) / relativeSize; renderer.DrawQuad(texture, drawQuad, colourInfo, new RectangleF(0, 0, 1, 1), textureCoords: textureCoords); } shader.Unbind(); } private static Quad getClampedQuad(Axes clampAxes, Vector2 topLeft, Vector2 size) { Vector2 clampedTopLeft = topLeft; if (clampAxes == Axes.X || clampAxes == Axes.Both) { clampedTopLeft.X = Math.Clamp(topLeft.X, 0f, 1f); size.X = Math.Clamp(topLeft.X + size.X, 0f, 1f) - clampedTopLeft.X; } if (clampAxes == Axes.Y || clampAxes == Axes.Both) { clampedTopLeft.Y = Math.Clamp(topLeft.Y, 0f, 1f); size.Y = Math.Clamp(topLeft.Y + size.Y, 0f, 1f) - clampedTopLeft.Y; } return new Quad(clampedTopLeft.X, clampedTopLeft.Y, size.X, size.Y); } protected override void Dispose(bool isDisposing) { base.Dispose(isDisposing); borderDataBuffer?.Dispose(); } } protected struct TriangleParticle : IComparable<TriangleParticle> { /// <summary> /// The position of the top vertex of the triangle. /// </summary> public Vector2 Position; /// <summary> /// The colour shade of the triangle. /// This is needed for colour recalculation of visible triangles when <see cref="ColourDark"/> or <see cref="ColourLight"/> is changed. /// </summary> public float ColourShade; /// <summary> /// The colour of the triangle. /// </summary> public Color4 Colour; /// <summary> /// The scale of the triangle. /// </summary> public float Scale; /// <summary> /// Compares two <see cref="TriangleParticle"/>s. This is a reverse comparer because when the /// triangles are added to the particles list, they should be drawn from largest to smallest /// such that the smaller triangles appear on top. /// </summary> /// <param name="other"></param> public int CompareTo(TriangleParticle other) => other.Scale.CompareTo(Scale); } } }