Path: blob/master/deprecated/scripts/beta_credible_int_demo.py
1192 views
# Compute 95% CI for a beta distribution1import superimport23from scipy.stats import beta4import numpy as np5np.random.seed(42)67N1 = 2; N0 = 8; N = N0 + N1 # Sufficient statistics8aprior = 1; bprior = 1; # prior9apost = aprior + N1; bpost = bprior + N0 # posterior1011alpha = 0.0512CI1 = beta.interval(1-alpha, apost, bpost)13print('{:0.2f}--{:0.2f}'.format(CI1[0], CI1[1])) # (0.06:0.52)1415l = beta.ppf(alpha/2, apost, bpost)16u = beta.ppf(1-alpha/2, apost, bpost)17CI2 = (l,u)18print('{:0.2f}--{:0.2f}'.format(CI2[0], CI2[1])) # (0.06:0.52)1920samples = beta.rvs(apost, bpost, size=1000)21samples = np.sort(samples)22CI3 = np.percentile(samples, 100*np.array([alpha/2, 1-alpha/2]))23print('{:0.2f}--{:0.2f}'.format(CI3[0], CI3[1])) # (0.06:0.51)242526