Path: blob/master/internal/add_chapterwise_readme.ipynb
1191 views
Kernel: Python [conda env:root] *
In [134]:
Get chapter names
In [130]:
Out[130]:
1 ['Introduction']
2 ['Probability: univariate models']
3 ['Probability: multivariate models']
4 ['Statistics']
5 ['Decision theory']
6 ['Information theory']
7 ['Linear algebra']
8 ['Optimization']
9 ['Linear discriminant analysis']
10 ['Logistic regression']
11 ['Linear regression']
12 ['Generalized linear models']
13 ['Neural networks for unstructured data']
14 ['Neural networks for images']
15 ['Neural networks for sequences']
16 ['Exemplar-based methods']
17 ['Kernel methods']
18 ['Trees']
19 ['Learning with fewer labeled examples']
20 ['Dimensionality reduction']
21 ['Clustering']
22 ['Recommender systems']
23 ['Graph embeddings']
In [131]:
Out[131]:
In [132]:
Create a Readme.md
In [133]:
Out[133]:
'\n# "Probabilistic Machine Learning: An Introduction"\n\n## Chapters\n|Chapter|Name| Notebooks|\n|-|-|-|\n| 1 | Introduction | [01/](01/) |\n| 2 | Probability: univariate models | [02/](02/) |\n| 3 | Probability: multivariate models | [03/](03/) |\n| 4 | Statistics | [04/](04/) |\n| 5 | Decision theory | [05/](05/) |\n| 6 | Information theory | [06/](06/) |\n| 7 | Linear algebra | [07/](07/) |\n| 8 | Optimization | [08/](08/) |\n| 9 | Linear discriminant analysis | [09/](09/) |\n| 10 | Logistic regression | [10/](10/) |\n| 11 | Linear regression | [11/](11/) |\n| 12 | Generalized linear models | [12/](12/) |\n| 13 | Neural networks for unstructured data | [13/](13/) |\n| 14 | Neural networks for images | [14/](14/) |\n| 15 | Neural networks for sequences | [15/](15/) |\n| 16 | Exemplar-based methods | [16/](16/) |\n| 17 | Kernel methods | [17/](17/) |\n| 18 | Trees | [18/](18/) |\n| 19 | Learning with fewer labeled examples | [19/](19/) |\n| 20 | Dimensionality reduction | [20/](20/) |\n| 21 | Clustering | [21/](21/) |\n| 22 | Recommender systems | [22/](22/) |\n| 23 | Graph embeddings | [23/](23/) |\n'
In [6]:
Chapterwise README.md
In [135]:
In [136]:
Out[136]:
{'1.1': '',
'1.2': '',
'1.3': 'iris_plot.ipynb',
'1.4': 'iris_dtree.ipynb',
'1.5': 'linreg_residuals_plot.ipynb',
'1.6': 'linreg_2d_surface_demo.ipynb',
'1.7': 'linreg_poly_vs_degree.ipynb',
'1.8': 'iris_kmeans.ipynb',
'1.9': 'iris_pca.ipynb',
'1.10': '',
'1.11': '',
'1.12': 'fig_1_12.ipynb',
'1.13': 'fig_1_13.ipynb',
'1.14': '',
'1.15': '',
'2.1': 'discrete_prob_dist_plot.ipynb',
'2.2': 'fig_2_2.ipynb',
'2.3': '',
'2.4': 'bimodal_dist_plot.ipynb',
'2.5': 'anscombes_quartet.ipynb',
'2.6': 'datasaurus_dozen.ipynb',
'2.7': '',
'2.8': '',
'2.9': 'binom_dist_plot.ipynb',
'2.10': 'activation_fun_plot.ipynb',
'2.11': 'iris_logreg.ipynb',
'2.12': 'softmax_plot.ipynb',
'2.13': 'iris_logreg.ipynb',
'2.14': 'linreg_1d_hetero_tfp.ipynb',
'2.15': 'student_laplace_pdf_plot.ipynb',
'2.16': 'robust_pdf_plot.ipynb',
'2.17': 'fig_2_17.ipynb',
'2.18': '',
'2.19': '',
'2.20': '',
'2.21': '',
'2.22': '',
'2.23': 'centralLimitDemo.ipynb',
'2.24': 'change_of_vars_demo1d.ipynb',
'3.1': '',
'3.2': '',
'3.3': 'simpsons_paradox.ipynb',
'3.4': '',
'3.5': 'gauss_plot_2d.ipynb',
'3.6': 'gauss_plot_2d.ipynb',
'3.7': 'gauss_imputation_known_params_demo.ipynb',
'3.8': 'gauss_infer_1d.ipynb',
'3.9': 'gauss_infer_2d.ipynb',
'3.10': 'sensor_fusion_2d.ipynb',
'3.11': 'gmm_plot_demo.ipynb',
'3.12': 'gmm_2d.ipynb',
'3.13': 'mix_bernoulli_em_mnist.ipynb',
'3.14': '',
'3.15': '',
'3.16': '',
'3.17': '',
'4.1': 'iris_cov_mat.ipynb',
'4.2': 'hinge_loss_plot.ipynb',
'4.3': 'ema_demo.ipynb',
'4.4': 'shrinkcov_plots.ipynb',
'4.5': 'linreg_poly_ridge.ipynb',
'4.6': '',
'4.7': 'polyfitRidgeCV.ipynb',
'4.8': 'imdb_mlp_bow_tf.ipynb',
'4.9': 'linreg_poly_vs_n.ipynb',
'4.10': 'beta_binom_post_plot.ipynb',
'4.11': '',
'4.12': 'beta_binom_post_pred_plot.ipynb',
'4.13': 'mixbetademo.ipynb',
'4.14': 'fig_4_14.ipynb',
'4.15': 'dirichlet_samples_plot.ipynb',
'4.16': 'gauss_infer_1d.ipynb',
'4.17': 'gauss_infer_2d.ipynb',
'4.18': 'betaHPD.ipynb',
'4.19': 'postDensityIntervals.ipynb',
'4.20': 'fig_4_20.ipynb',
'4.21': '',
'4.22': 'laplace_approx_beta_binom_jax.ipynb',
'4.23': 'bootstrapDemoBer.ipynb',
'4.24': 'samplingDistributionGaussianShrinkage.ipynb',
'4.25': 'biasVarModelComplexity3.ipynb',
'4.26': '',
'5.1': '',
'5.2': 'fig_5_2.ipynb',
'5.3': 'huberLossPlot.ipynb',
'5.4': 'coins_model_sel_demo.ipynb',
'5.5': 'linreg_eb_modelsel_vs_n.ipynb',
'5.6': 'linreg_eb_modelsel_vs_n.ipynb',
'5.7': '',
'5.8': 'riskFnGauss.ipynb',
'5.9': '',
'5.10': 'fig_5_10.ipynb',
'5.11': '',
'6.1': 'bernoulli_entropy_fig.ipynb',
'6.2': 'seq_logo_demo.ipynb',
'6.3': 'KLfwdReverseMixGauss.ipynb',
'6.4': '',
'6.5': '',
'6.6': 'MIC_correlation_2d.ipynb',
'6.7': '',
'7.1': '',
'7.2': '',
'7.3': '',
'7.4': '',
'7.5': '',
'7.6': 'gaussEvec.ipynb',
'7.7': 'height_weight_whiten_plot.ipynb',
'7.8': '',
'7.9': 'svd_image_demo.ipynb',
'7.10': 'svd_image_demo.ipynb',
'7.11': '',
'7.12': '',
'8.1': 'fig_8_1.ipynb',
'8.2': '',
'8.3': '',
'8.4': '',
'8.5': '',
'8.6': '',
'8.7': 'smooth-vs-nonsmooth-1d.ipynb',
'8.8': '',
'8.9': '',
'8.10': '',
'8.11': 'steepestDescentDemo.ipynb',
'8.12': 'lineSearchConditionNum.ipynb',
'8.13': '',
'8.14': 'fig_8_14.ipynb',
'8.15': '',
'8.16': 'lms_demo.ipynb',
'8.17': 'lrschedule_tf.ipynb',
'8.18': 'learning_rate_plot.ipynb',
'8.19': '',
'8.20': '',
'8.21': '',
'8.22': '',
'8.23': 'emLogLikelihoodMax.ipynb',
'8.24': '',
'8.25': 'mix_gauss_demo_faithful.ipynb',
'8.26': 'fig_8_26.ipynb',
'8.27': 'gmm_lik_surface_plot.ipynb',
'9.1': 'discrim_analysis_dboundaries_plot2.ipynb',
'9.2': 'discrim_analysis_dboundaries_plot2.ipynb',
'9.3': '',
'9.4': 'fisher_lda_demo.ipynb',
'9.5': 'fisher_discrim_vowel.ipynb',
'9.6': 'naive_bayes_mnist_jax.ipynb',
'9.7': 'naive_bayes_mnist_jax.ipynb',
'9.8': 'generativeVsDiscrim.ipynb',
'10.1': 'iris_logreg.ipynb',
'10.2': 'sigmoid_2d_plot.ipynb',
'10.3': '',
'10.4': 'logreg_poly_demo.ipynb',
'10.5': 'iris_logreg_loss_surface.ipynb',
'10.6': 'logreg_poly_demo.ipynb',
'10.7': 'logreg_multiclass_demo.ipynb',
'10.8': '',
'10.9': '',
'10.10': 'logreg_iris_bayes_robust_1d_pymc3.ipynb',
'10.11': '',
'10.12': '',
'10.13': 'logreg_laplace_demo.ipynb',
'10.14': 'logreg_laplace_demo.ipynb',
'10.15': '',
'11.1': 'linreg_poly_vs_degree.ipynb',
'11.2': 'linreg_contours_sse_plot.ipynb',
'11.3': '',
'11.4': 'linregOnlineDemo.ipynb',
'11.5': 'linreg_poly_vs_degree.ipynb',
'11.6': 'linreg_poly_vs_degree.ipynb',
'11.7': 'geom_ridge.ipynb',
'11.8': '',
'11.9': '',
'11.10': 'fig_11_10.ipynb',
'11.11': 'prostate_comparison.ipynb',
'11.12': 'prostate_comparison.ipynb',
'11.13': 'sparse_sensing_demo.ipynb',
'11.14': 'groupLassoDemo.ipynb',
'11.15': 'groupLassoDemo.ipynb',
'11.16': 'splines_basis_weighted.ipynb',
'11.17': 'splines_basis_heatmap.ipynb',
'11.18': 'splines_cherry_blossoms.ipynb',
'11.19': 'fig_11_19.ipynb',
'11.20': 'linreg_2d_bayes_demo.ipynb',
'11.21': 'linreg_post_pred_plot.ipynb',
'11.22': 'linreg_2d_bayes_centering_pymc3.ipynb',
'11.23': 'multi_collinear_legs_numpyro.ipynb',
'11.24': 'multi_collinear_legs_numpyro.ipynb',
'12.1': 'poisson_regression_insurance.ipynb',
'12.2': 'poisson_regression_insurance.ipynb',
'13.1': 'xor_heaviside.ipynb',
'13.2': 'activation_fun_plot.ipynb',
'13.3': '',
'13.4': 'mlp_mnist_tf.ipynb',
'13.5': '',
'13.6': 'mlp_1d_regression_hetero_tfp.ipynb',
'13.7': '',
'13.8': '',
'13.9': '',
'13.10': '',
'13.11': '',
'13.12': '',
'13.13': '',
'13.14': 'activation_fun_deriv_jax.ipynb',
'13.15': '',
'13.16': '',
'13.17': 'sparse_mlp.ipynb',
'13.18': '',
'13.19': '',
'13.20': 'sgd_minima_variance.ipynb',
'13.21': 'logregXorDemo.ipynb',
'13.22': 'linregRbfDemo.ipynb',
'13.23': 'mixexpDemoOneToMany.ipynb',
'13.24': '',
'13.25': '',
'14.1': '',
'14.2': '',
'14.3': '',
'14.4': '',
'14.5': 'conv2d_jax.ipynb',
'14.6': '',
'14.7': '',
'14.8': '',
'14.9': 'conv2d_jax.ipynb',
'14.10': '',
'14.11': '',
'14.12': '',
'14.13': '',
'14.14': '',
'14.15': '',
'14.16': '',
'14.17': 'cnn_mnist_tf.ipynb',
'14.18': '',
'14.19': '',
'14.20': '',
'14.21': '',
'14.22': '',
'14.23': '',
'14.24': '',
'14.25': '',
'14.26': '',
'14.27': '',
'14.28': '',
'14.29': '',
'14.30': '',
'14.31': '',
'14.32': '',
'14.33': '',
'14.34': '',
'14.35': '',
'14.36': '',
'14.37': '',
'14.38': '',
'14.39': '',
'14.40': '',
'14.41': '',
'15.1': '',
'15.2': 'rnn_jax.ipynb',
'15.3': '',
'15.4': '',
'15.5': '',
'15.6': '',
'15.7': '',
'15.8': '',
'15.9': '',
'15.10': '',
'15.11': '',
'15.12': '',
'15.13': '',
'15.14': '',
'15.15': '',
'15.16': '',
'15.17': 'kernel_regression_attention.ipynb',
'15.18': '',
'15.19': '',
'15.20': '',
'15.21': '',
'15.22': '',
'15.23': '',
'15.24': '',
'15.25': 'positional_encoding_jax.ipynb',
'15.26': '',
'15.27': '',
'15.28': '',
'15.29': '',
'15.30': '',
'15.31': '',
'15.32': '',
'15.33': '',
'15.34': '',
'15.35': '',
'15.36': '',
'16.1': 'knn_voronoi_plot.ipynb',
'16.2': 'knn_classify_demo.ipynb',
'16.3': 'curse_dimensionality_plot.ipynb',
'16.4': '',
'16.5': '',
'16.6': '',
'16.7': '',
'16.8': 'smoothingKernelPlot.ipynb',
'16.9': 'parzen_window_demo2.ipynb',
'16.10': 'kernelRegressionDemo.ipynb',
'17.1': 'gprDemoArd.ipynb',
'17.2': 'gpKernelPlot.ipynb',
'17.3': 'gpKernelPlot.ipynb',
'17.4': '',
'17.5': '',
'17.6': '',
'17.7': 'gprDemoNoiseFree.ipynb',
'17.8': 'gprDemoChangeHparams.ipynb',
'17.9': 'gpr_demo_marglik.ipynb',
'17.10': 'gp_classify_iris_1d_pymc3.ipynb',
'17.11': 'gp_classify_spaceflu_1d_pymc3.ipynb',
'17.12': '',
'17.13': '',
'17.14': 'svm_classifier_feature_scaling.ipynb',
'17.15': '',
'17.16': '',
'17.17': 'svm_classifier_2d.ipynb',
'17.18': 'svmCgammaDemo.ipynb',
'17.19': 'huberLossPlot.ipynb',
'17.20': 'svm_regression_1d.ipynb',
'17.21': 'kernelBinaryClassifDemo.ipynb',
'17.22': 'rvm_regression_1d.ipynb',
'17.23': 'rvm_regression_1d.ipynb',
'18.1': 'regtreeSurfaceDemo.ipynb',
'18.2': '',
'18.3': 'dtree_sensitivity.ipynb',
'18.4': 'fig_18_4.ipynb',
'18.5': 'spam_tree_ensemble_compare.ipynb',
'18.6': 'boosted_regr_trees.ipynb',
'18.7': 'hinge_loss_plot.ipynb',
'18.8': 'rf_feature_importance_mnist.ipynb',
'18.9': 'spam_tree_ensemble_interpret.ipynb',
'18.10': 'spam_tree_ensemble_interpret.ipynb',
'19.1': 'image_augmentation_jax.ipynb',
'19.2': '',
'19.3': '',
'19.4': '',
'19.5': '',
'19.6': '',
'19.7': '',
'19.8': '',
'19.9': '',
'19.10': '',
'19.11': '',
'19.12': '',
'19.13': '',
'19.14': 'hbayes_maml.ipynb',
'19.15': '',
'19.16': '',
'20.1': 'pcaDemo2d.ipynb',
'20.2': 'pca_digits.ipynb',
'20.3': 'pcaImageDemo.ipynb',
'20.4': 'pca_projected_variance.ipynb',
'20.5': 'pcaStandardization.ipynb',
'20.6': 'pcaOverfitDemo.ipynb',
'20.7': 'pcaOverfitDemo.ipynb',
'20.8': 'pcaOverfitDemo.ipynb',
'20.9': '',
'20.10': 'pcaEmStepByStep.ipynb',
'20.11': '',
'20.12': 'mixPpcaDemo.ipynb',
'20.13': 'binary_fa_demo.ipynb',
'20.14': '',
'20.15': '',
'20.16': '',
'20.17': 'ae_mnist_tf.ipynb',
'20.18': 'ae_mnist_tf.ipynb',
'20.19': 'ae_mnist_tf.ipynb',
'20.20': '',
'20.21': 'ae_mnist_tf.ipynb',
'20.22': '',
'20.23': '',
'20.24': 'fig_20_24.ipynb',
'20.25': 'fig_20_25.ipynb',
'20.26': 'fig_20_26.ipynb',
'20.27': 'vae_mnist_conv_lightning.ipynb',
'20.28': '',
'20.29': '',
'20.30': 'fig_20_30.ipynb',
'20.31': 'fig_20_31.ipynb',
'20.32': '',
'20.33': 'fig_20_33.ipynb',
'20.34': 'manifold_swiss_sklearn.ipynb',
'20.35': 'kpcaScholkopf.ipynb',
'20.36': 'fig_20_36.ipynb',
'20.37': 'fig_20_37.ipynb',
'20.38': 'fig_20_38.ipynb',
'20.39': '',
'20.40': '',
'20.41': 'fig_20_41.ipynb',
'20.42': '',
'20.43': '',
'20.44': '',
'20.45': '',
'21.1': '',
'21.2': 'agglomDemo.ipynb',
'21.3': '',
'21.4': 'hclust_yeast_demo.ipynb',
'21.5': 'yeast_data_viz.ipynb',
'21.6': 'hclust_yeast_demo.ipynb',
'21.7': 'kmeans_voronoi.ipynb',
'21.8': 'kmeans_yeast_demo.ipynb',
'21.9': 'vqDemo.ipynb',
'21.10': 'kmeans_minibatch.ipynb',
'21.11': 'fig_21_11.ipynb',
'21.12': 'kmeans_silhouette.ipynb',
'21.13': 'kmeans_silhouette.ipynb',
'21.14': 'gmm_2d.ipynb',
'21.15': 'gmm_identifiability_pymc3.ipynb',
'21.16': 'gmm_identifiability_pymc3.ipynb',
'21.17': 'gmm_chooseK_pymc3.ipynb',
'21.18': 'gmm_chooseK_pymc3.ipynb',
'21.19': 'spectral_clustering_demo.ipynb',
'21.20': '',
'21.21': '',
'21.22': '',
'22.1': '',
'22.2': '',
'22.3': 'matrix_factorization_recommender.ipynb',
'22.4': 'matrix_factorization_recommender.ipynb',
'22.5': '',
'22.6': '',
'23.1': '',
'23.2': '',
'23.3': '',
'23.4': '',
'23.5': '',
'23.6': '',
'23.7': '',
'23.8': '',
'23.9': ''}
In [137]:
Out[137]:
{1: {'1.1': '',
'1.2': '',
'1.3': 'iris_plot.ipynb',
'1.4': 'iris_dtree.ipynb',
'1.5': 'linreg_residuals_plot.ipynb',
'1.6': 'linreg_2d_surface_demo.ipynb',
'1.7': 'linreg_poly_vs_degree.ipynb',
'1.8': 'iris_kmeans.ipynb',
'1.9': 'iris_pca.ipynb',
'1.10': '',
'1.11': '',
'1.12': 'fig_1_12.ipynb',
'1.13': 'fig_1_13.ipynb',
'1.14': '',
'1.15': ''},
2: {'2.1': 'discrete_prob_dist_plot.ipynb',
'2.2': 'fig_2_2.ipynb',
'2.3': '',
'2.4': 'bimodal_dist_plot.ipynb',
'2.5': 'anscombes_quartet.ipynb',
'2.6': 'datasaurus_dozen.ipynb',
'2.7': '',
'2.8': '',
'2.9': 'binom_dist_plot.ipynb',
'2.10': 'activation_fun_plot.ipynb',
'2.11': 'iris_logreg.ipynb',
'2.12': 'softmax_plot.ipynb',
'2.13': 'iris_logreg.ipynb',
'2.14': 'linreg_1d_hetero_tfp.ipynb',
'2.15': 'student_laplace_pdf_plot.ipynb',
'2.16': 'robust_pdf_plot.ipynb',
'2.17': 'fig_2_17.ipynb',
'2.18': '',
'2.19': '',
'2.20': '',
'2.21': '',
'2.22': '',
'2.23': 'centralLimitDemo.ipynb',
'2.24': 'change_of_vars_demo1d.ipynb'},
3: {'3.1': '',
'3.2': '',
'3.3': 'simpsons_paradox.ipynb',
'3.4': '',
'3.5': 'gauss_plot_2d.ipynb',
'3.6': 'gauss_plot_2d.ipynb',
'3.7': 'gauss_imputation_known_params_demo.ipynb',
'3.8': 'gauss_infer_1d.ipynb',
'3.9': 'gauss_infer_2d.ipynb',
'3.10': 'sensor_fusion_2d.ipynb',
'3.11': 'gmm_plot_demo.ipynb',
'3.12': 'gmm_2d.ipynb',
'3.13': 'mix_bernoulli_em_mnist.ipynb',
'3.14': '',
'3.15': '',
'3.16': '',
'3.17': ''},
4: {'4.1': 'iris_cov_mat.ipynb',
'4.2': 'hinge_loss_plot.ipynb',
'4.3': 'ema_demo.ipynb',
'4.4': 'shrinkcov_plots.ipynb',
'4.5': 'linreg_poly_ridge.ipynb',
'4.6': '',
'4.7': 'polyfitRidgeCV.ipynb',
'4.8': 'imdb_mlp_bow_tf.ipynb',
'4.9': 'linreg_poly_vs_n.ipynb',
'4.10': 'beta_binom_post_plot.ipynb',
'4.11': '',
'4.12': 'beta_binom_post_pred_plot.ipynb',
'4.13': 'mixbetademo.ipynb',
'4.14': 'fig_4_14.ipynb',
'4.15': 'dirichlet_samples_plot.ipynb',
'4.16': 'gauss_infer_1d.ipynb',
'4.17': 'gauss_infer_2d.ipynb',
'4.18': 'betaHPD.ipynb',
'4.19': 'postDensityIntervals.ipynb',
'4.20': 'fig_4_20.ipynb',
'4.21': '',
'4.22': 'laplace_approx_beta_binom_jax.ipynb',
'4.23': 'bootstrapDemoBer.ipynb',
'4.24': 'samplingDistributionGaussianShrinkage.ipynb',
'4.25': 'biasVarModelComplexity3.ipynb',
'4.26': ''},
5: {'5.1': '',
'5.2': 'fig_5_2.ipynb',
'5.3': 'huberLossPlot.ipynb',
'5.4': 'coins_model_sel_demo.ipynb',
'5.5': 'linreg_eb_modelsel_vs_n.ipynb',
'5.6': 'linreg_eb_modelsel_vs_n.ipynb',
'5.7': '',
'5.8': 'riskFnGauss.ipynb',
'5.9': '',
'5.10': 'fig_5_10.ipynb',
'5.11': ''},
6: {'6.1': 'bernoulli_entropy_fig.ipynb',
'6.2': 'seq_logo_demo.ipynb',
'6.3': 'KLfwdReverseMixGauss.ipynb',
'6.4': '',
'6.5': '',
'6.6': 'MIC_correlation_2d.ipynb',
'6.7': ''},
7: {'7.1': '',
'7.2': '',
'7.3': '',
'7.4': '',
'7.5': '',
'7.6': 'gaussEvec.ipynb',
'7.7': 'height_weight_whiten_plot.ipynb',
'7.8': '',
'7.9': 'svd_image_demo.ipynb',
'7.10': 'svd_image_demo.ipynb',
'7.11': '',
'7.12': ''},
8: {'8.1': 'fig_8_1.ipynb',
'8.2': '',
'8.3': '',
'8.4': '',
'8.5': '',
'8.6': '',
'8.7': 'smooth-vs-nonsmooth-1d.ipynb',
'8.8': '',
'8.9': '',
'8.10': '',
'8.11': 'steepestDescentDemo.ipynb',
'8.12': 'lineSearchConditionNum.ipynb',
'8.13': '',
'8.14': 'fig_8_14.ipynb',
'8.15': '',
'8.16': 'lms_demo.ipynb',
'8.17': 'lrschedule_tf.ipynb',
'8.18': 'learning_rate_plot.ipynb',
'8.19': '',
'8.20': '',
'8.21': '',
'8.22': '',
'8.23': 'emLogLikelihoodMax.ipynb',
'8.24': '',
'8.25': 'mix_gauss_demo_faithful.ipynb',
'8.26': 'fig_8_26.ipynb',
'8.27': 'gmm_lik_surface_plot.ipynb'},
9: {'9.1': 'discrim_analysis_dboundaries_plot2.ipynb',
'9.2': 'discrim_analysis_dboundaries_plot2.ipynb',
'9.3': '',
'9.4': 'fisher_lda_demo.ipynb',
'9.5': 'fisher_discrim_vowel.ipynb',
'9.6': 'naive_bayes_mnist_jax.ipynb',
'9.7': 'naive_bayes_mnist_jax.ipynb',
'9.8': 'generativeVsDiscrim.ipynb'},
10: {'10.1': 'iris_logreg.ipynb',
'10.2': 'sigmoid_2d_plot.ipynb',
'10.3': '',
'10.4': 'logreg_poly_demo.ipynb',
'10.5': 'iris_logreg_loss_surface.ipynb',
'10.6': 'logreg_poly_demo.ipynb',
'10.7': 'logreg_multiclass_demo.ipynb',
'10.8': '',
'10.9': '',
'10.10': 'logreg_iris_bayes_robust_1d_pymc3.ipynb',
'10.11': '',
'10.12': '',
'10.13': 'logreg_laplace_demo.ipynb',
'10.14': 'logreg_laplace_demo.ipynb',
'10.15': ''},
11: {'11.1': 'linreg_poly_vs_degree.ipynb',
'11.2': 'linreg_contours_sse_plot.ipynb',
'11.3': '',
'11.4': 'linregOnlineDemo.ipynb',
'11.5': 'linreg_poly_vs_degree.ipynb',
'11.6': 'linreg_poly_vs_degree.ipynb',
'11.7': 'geom_ridge.ipynb',
'11.8': '',
'11.9': '',
'11.10': 'fig_11_10.ipynb',
'11.11': 'prostate_comparison.ipynb',
'11.12': 'prostate_comparison.ipynb',
'11.13': 'sparse_sensing_demo.ipynb',
'11.14': 'groupLassoDemo.ipynb',
'11.15': 'groupLassoDemo.ipynb',
'11.16': 'splines_basis_weighted.ipynb',
'11.17': 'splines_basis_heatmap.ipynb',
'11.18': 'splines_cherry_blossoms.ipynb',
'11.19': 'fig_11_19.ipynb',
'11.20': 'linreg_2d_bayes_demo.ipynb',
'11.21': 'linreg_post_pred_plot.ipynb',
'11.22': 'linreg_2d_bayes_centering_pymc3.ipynb',
'11.23': 'multi_collinear_legs_numpyro.ipynb',
'11.24': 'multi_collinear_legs_numpyro.ipynb'},
12: {'12.1': 'poisson_regression_insurance.ipynb',
'12.2': 'poisson_regression_insurance.ipynb'},
13: {'13.1': 'xor_heaviside.ipynb',
'13.2': 'activation_fun_plot.ipynb',
'13.3': '',
'13.4': 'mlp_mnist_tf.ipynb',
'13.5': '',
'13.6': 'mlp_1d_regression_hetero_tfp.ipynb',
'13.7': '',
'13.8': '',
'13.9': '',
'13.10': '',
'13.11': '',
'13.12': '',
'13.13': '',
'13.14': 'activation_fun_deriv_jax.ipynb',
'13.15': '',
'13.16': '',
'13.17': 'sparse_mlp.ipynb',
'13.18': '',
'13.19': '',
'13.20': 'sgd_minima_variance.ipynb',
'13.21': 'logregXorDemo.ipynb',
'13.22': 'linregRbfDemo.ipynb',
'13.23': 'mixexpDemoOneToMany.ipynb',
'13.24': '',
'13.25': ''},
14: {'14.1': '',
'14.2': '',
'14.3': '',
'14.4': '',
'14.5': 'conv2d_jax.ipynb',
'14.6': '',
'14.7': '',
'14.8': '',
'14.9': 'conv2d_jax.ipynb',
'14.10': '',
'14.11': '',
'14.12': '',
'14.13': '',
'14.14': '',
'14.15': '',
'14.16': '',
'14.17': 'cnn_mnist_tf.ipynb',
'14.18': '',
'14.19': '',
'14.20': '',
'14.21': '',
'14.22': '',
'14.23': '',
'14.24': '',
'14.25': '',
'14.26': '',
'14.27': '',
'14.28': '',
'14.29': '',
'14.30': '',
'14.31': '',
'14.32': '',
'14.33': '',
'14.34': '',
'14.35': '',
'14.36': '',
'14.37': '',
'14.38': '',
'14.39': '',
'14.40': '',
'14.41': ''},
15: {'15.1': '',
'15.2': 'rnn_jax.ipynb',
'15.3': '',
'15.4': '',
'15.5': '',
'15.6': '',
'15.7': '',
'15.8': '',
'15.9': '',
'15.10': '',
'15.11': '',
'15.12': '',
'15.13': '',
'15.14': '',
'15.15': '',
'15.16': '',
'15.17': 'kernel_regression_attention.ipynb',
'15.18': '',
'15.19': '',
'15.20': '',
'15.21': '',
'15.22': '',
'15.23': '',
'15.24': '',
'15.25': 'positional_encoding_jax.ipynb',
'15.26': '',
'15.27': '',
'15.28': '',
'15.29': '',
'15.30': '',
'15.31': '',
'15.32': '',
'15.33': '',
'15.34': '',
'15.35': '',
'15.36': ''},
16: {'16.1': 'knn_voronoi_plot.ipynb',
'16.2': 'knn_classify_demo.ipynb',
'16.3': 'curse_dimensionality_plot.ipynb',
'16.4': '',
'16.5': '',
'16.6': '',
'16.7': '',
'16.8': 'smoothingKernelPlot.ipynb',
'16.9': 'parzen_window_demo2.ipynb',
'16.10': 'kernelRegressionDemo.ipynb'},
17: {'17.1': 'gprDemoArd.ipynb',
'17.2': 'gpKernelPlot.ipynb',
'17.3': 'gpKernelPlot.ipynb',
'17.4': '',
'17.5': '',
'17.6': '',
'17.7': 'gprDemoNoiseFree.ipynb',
'17.8': 'gprDemoChangeHparams.ipynb',
'17.9': 'gpr_demo_marglik.ipynb',
'17.10': 'gp_classify_iris_1d_pymc3.ipynb',
'17.11': 'gp_classify_spaceflu_1d_pymc3.ipynb',
'17.12': '',
'17.13': '',
'17.14': 'svm_classifier_feature_scaling.ipynb',
'17.15': '',
'17.16': '',
'17.17': 'svm_classifier_2d.ipynb',
'17.18': 'svmCgammaDemo.ipynb',
'17.19': 'huberLossPlot.ipynb',
'17.20': 'svm_regression_1d.ipynb',
'17.21': 'kernelBinaryClassifDemo.ipynb',
'17.22': 'rvm_regression_1d.ipynb',
'17.23': 'rvm_regression_1d.ipynb'},
18: {'18.1': 'regtreeSurfaceDemo.ipynb',
'18.2': '',
'18.3': 'dtree_sensitivity.ipynb',
'18.4': 'fig_18_4.ipynb',
'18.5': 'spam_tree_ensemble_compare.ipynb',
'18.6': 'boosted_regr_trees.ipynb',
'18.7': 'hinge_loss_plot.ipynb',
'18.8': 'rf_feature_importance_mnist.ipynb',
'18.9': 'spam_tree_ensemble_interpret.ipynb',
'18.10': 'spam_tree_ensemble_interpret.ipynb'},
19: {'19.1': 'image_augmentation_jax.ipynb',
'19.2': '',
'19.3': '',
'19.4': '',
'19.5': '',
'19.6': '',
'19.7': '',
'19.8': '',
'19.9': '',
'19.10': '',
'19.11': '',
'19.12': '',
'19.13': '',
'19.14': 'hbayes_maml.ipynb',
'19.15': '',
'19.16': ''},
20: {'20.1': 'pcaDemo2d.ipynb',
'20.2': 'pca_digits.ipynb',
'20.3': 'pcaImageDemo.ipynb',
'20.4': 'pca_projected_variance.ipynb',
'20.5': 'pcaStandardization.ipynb',
'20.6': 'pcaOverfitDemo.ipynb',
'20.7': 'pcaOverfitDemo.ipynb',
'20.8': 'pcaOverfitDemo.ipynb',
'20.9': '',
'20.10': 'pcaEmStepByStep.ipynb',
'20.11': '',
'20.12': 'mixPpcaDemo.ipynb',
'20.13': 'binary_fa_demo.ipynb',
'20.14': '',
'20.15': '',
'20.16': '',
'20.17': 'ae_mnist_tf.ipynb',
'20.18': 'ae_mnist_tf.ipynb',
'20.19': 'ae_mnist_tf.ipynb',
'20.20': '',
'20.21': 'ae_mnist_tf.ipynb',
'20.22': '',
'20.23': '',
'20.24': 'fig_20_24.ipynb',
'20.25': 'fig_20_25.ipynb',
'20.26': 'fig_20_26.ipynb',
'20.27': 'vae_mnist_conv_lightning.ipynb',
'20.28': '',
'20.29': '',
'20.30': 'fig_20_30.ipynb',
'20.31': 'fig_20_31.ipynb',
'20.32': '',
'20.33': 'fig_20_33.ipynb',
'20.34': 'manifold_swiss_sklearn.ipynb',
'20.35': 'kpcaScholkopf.ipynb',
'20.36': 'fig_20_36.ipynb',
'20.37': 'fig_20_37.ipynb',
'20.38': 'fig_20_38.ipynb',
'20.39': '',
'20.40': '',
'20.41': 'fig_20_41.ipynb',
'20.42': '',
'20.43': '',
'20.44': '',
'20.45': ''},
21: {'21.1': '',
'21.2': 'agglomDemo.ipynb',
'21.3': '',
'21.4': 'hclust_yeast_demo.ipynb',
'21.5': 'yeast_data_viz.ipynb',
'21.6': 'hclust_yeast_demo.ipynb',
'21.7': 'kmeans_voronoi.ipynb',
'21.8': 'kmeans_yeast_demo.ipynb',
'21.9': 'vqDemo.ipynb',
'21.10': 'kmeans_minibatch.ipynb',
'21.11': 'fig_21_11.ipynb',
'21.12': 'kmeans_silhouette.ipynb',
'21.13': 'kmeans_silhouette.ipynb',
'21.14': 'gmm_2d.ipynb',
'21.15': 'gmm_identifiability_pymc3.ipynb',
'21.16': 'gmm_identifiability_pymc3.ipynb',
'21.17': 'gmm_chooseK_pymc3.ipynb',
'21.18': 'gmm_chooseK_pymc3.ipynb',
'21.19': 'spectral_clustering_demo.ipynb',
'21.20': '',
'21.21': '',
'21.22': ''},
22: {'22.1': '',
'22.2': '',
'22.3': 'matrix_factorization_recommender.ipynb',
'22.4': 'matrix_factorization_recommender.ipynb',
'22.5': '',
'22.6': ''},
23: {'23.1': '',
'23.2': '',
'23.3': '',
'23.4': '',
'23.5': '',
'23.6': '',
'23.7': '',
'23.8': '',
'23.9': ''}}
In [138]:
Out[138]:
{'14.27': ['Figure_14.27_A.jpg', 'Figure_14.27_B.png'],
'21.18': ['Figure_21.18.png'],
'15.22': ['Figure_15.22_A.png', 'Figure_15.22_B.png'],
'8.5': ['Figure_8.5_A.png', 'Figure_8.5_B.png'],
'4.6': ['Figure_4.6.png'],
'19.8': ['Figure_19.8_B.png', 'Figure_19.8_A.png'],
'11.9': ['Figure_11.9_B.png', 'Figure_11.9_A.png'],
'7.8': ['Figure_7.8_B.png', 'Figure_7.8_A.png'],
'8.17': ['Figure_8.17.png'],
'19.13': ['Figure_19.13.png'],
'14.13': ['Figure_14.13.png'],
'16.5': ['Figure_16.5_A.png', 'Figure_16.5_B.png'],
'23.3': ['Figure_23.3.png'],
'20.26': ['Figure_20.26_B.png', 'Figure_20.26_A.png'],
'13.13': ['Figure_13.13.png'],
'13.15': ['Figure_13.15_A.png', 'Figure_13.15_B.png'],
'14.16': ['Figure_14.16_B.png', 'Figure_14.16_A.png'],
'15.6': ['Figure_15.6.png'],
'7.2': ['Figure_7.2_A.png', 'Figure_7.2_B.png'],
'15.3': ['Figure_15.3.png'],
'21.21': ['Figure_21.21_B.png', 'Figure_21.21_A.png'],
'14.17': ['Figure_14.17_B.png', 'Figure_14.17_A.png'],
'13.6': ['Figure_13.6_B.png', 'Figure_13.6_A.png'],
'20.22': ['Figure_20.22.png'],
'12.2': ['Figure_12.2.png'],
'1.10': ['Figure_1.10_B.png', 'Figure_1.10_A.png'],
'6.4': ['Figure_6.4.png'],
'19.6': ['Figure_19.6_B.png', 'Figure_19.6_A.png'],
'4.21': ['Figure_4.21.png'],
'2.3': ['Figure_2.3.png'],
'11.8': ['Figure_11.8.png'],
'19.14': ['Figure_19.14.png'],
'10.9': ['Figure_10.9_A.png', 'Figure_10.9_B.png'],
'20.21': ['Figure_20.21_D.png',
'Figure_20.21_I.png',
'Figure_20.21_A.png',
'Figure_20.21_H.png',
'Figure_20.21_E.png',
'Figure_20.21_C.png',
'Figure_20.21_F.png',
'Figure_20.21_B.png',
'Figure_20.21_G.png'],
'11.3': ['Figure_11.3.png'],
'3.17': ['Figure_3.17.png'],
'22.3': ['Figure_22.3_B.png', 'Figure_22.3_A.png'],
'20.18': ['Figure_20.18_A.png', 'Figure_20.18_B.png'],
'15.5': ['Figure_15.5_A.png', 'Figure_15.5_B.png'],
'21.1': ['Figure_21.1.png'],
'20.29': ['Figure_20.29_B.png', 'Figure_20.29_A.png', 'Figure_20.29_C.png'],
'13.24': ['Figure_13.24.png'],
'15.31': ['Figure_15.31.png'],
'15.32': ['Figure_15.32.png'],
'14.40': ['Figure_14.40.png'],
'8.21': ['Figure_8.21.png'],
'14.22': ['Figure_14.22_B.png', 'Figure_14.22_A.png'],
'13.7': ['Figure_13.7_B.png', 'Figure_13.7_A.png'],
'1.2': ['Figure_1.2.png'],
'13.14': ['Figure_13.14_A.png', 'Figure_13.14_B.png'],
'13.4': ['Figure_13.4_A.png', 'Figure_13.4_B.png'],
'10.15': ['Figure_10.15_A.png', 'Figure_10.15_B.png'],
'14.37': ['Figure_14.37_C.jpg', 'Figure_14.37_B.jpg', 'Figure_14.37_A.jpg'],
'15.14': ['Figure_15.14.png'],
'15.8': ['Figure_15.8_A.png', 'Figure_15.8_B.png'],
'15.28': ['Figure_15.28.png'],
'13.18': ['Figure_13.18_B.png', 'Figure_13.18_A.png'],
'14.18': ['Figure_14.18.png'],
'8.15': ['Figure_8.15.png'],
'8.13': ['Figure_8.13.pdf'],
'14.15': ['Figure_14.15.png'],
'19.10': ['Figure_19.10_A.png', 'Figure_19.10_B.png'],
'20.17': ['Figure_20.17_B.png', 'Figure_20.17_A.png'],
'3.16': ['Figure_3.16.png'],
'15.19': ['Figure_15.19_A.png', 'Figure_15.19_B.png'],
'21.3': ['Figure_21.3_B.png', 'Figure_21.3_A.png', 'Figure_21.3_C.png'],
'20.43': ['Figure_20.43.jpg'],
'3.1': ['Figure_3.1.png'],
'23.8': ['Figure_23.8.png'],
'1.1': ['Figure_1.1_A.png', 'Figure_1.1_C.png', 'Figure_1.1_B.png'],
'22.5': ['Figure_22.5.png'],
'7.3': ['Figure_7.3_B.png', 'Figure_7.3_A.png'],
'20.25': ['Figure_20.25_A.png', 'Figure_20.25_B.png'],
'14.28': ['Figure_14.28.png'],
'5.7': ['Figure_5.7.png'],
'23.5': ['Figure_23.5.png'],
'4.26': ['Figure_4.26.png'],
'13.11': ['Figure_13.11.png'],
'14.12': ['Figure_14.12.png'],
'13.20': ['Figure_13.20_A.png', 'Figure_13.20_B.png'],
'20.32': ['Figure_20.32_B.png', 'Figure_20.32_A.png'],
'3.3': ['Figure_3.3_B.png', 'Figure_3.3_A.png'],
'19.11': ['Figure_19.11.png'],
'8.24': ['Figure_8.24.png'],
'8.3': ['Figure_8.3.png'],
'5.1': ['Figure_5.1.png'],
'14.39': ['Figure_14.39_B.png',
'Figure_14.39_C.png',
'Figure_14.39_D.png',
'Figure_14.39_F.png',
'Figure_14.39_H.png',
'Figure_14.39_A.png',
'Figure_14.39_G.png',
'Figure_14.39_E.png'],
'8.6': ['Figure_8.6.png'],
'13.8': ['Figure_13.8.png'],
'17.13': ['Figure_17.13_B.png', 'Figure_17.13_A.png'],
'15.20': ['Figure_15.20.png'],
'21.20': ['Figure_21.20.png'],
'9.6': ['Figure_9.6.png'],
'14.26': ['Figure_14.26.png'],
'16.6': ['Figure_16.6_B.png', 'Figure_16.6_A.png'],
'14.19': ['Figure_14.19.png'],
'6.5': ['Figure_6.5.png'],
'15.10': ['Figure_15.10.png'],
'19.2': ['Figure_19.2.png'],
'3.14': ['Figure_3.14.png'],
'14.1': ['Figure_14.1.png'],
'19.16': ['Figure_19.16.png'],
'20.45': ['Figure_20.45.png'],
'14.31': ['Figure_14.31.png'],
'12.1': ['Figure_12.1.png'],
'15.25': ['Figure_15.25_A.png', 'Figure_15.25_B.png'],
'7.11': ['Figure_7.11_A.png', 'Figure_7.11_B.png'],
'3.4': ['Figure_3.4_A.png', 'Figure_3.4_B.png'],
'6.7': ['Figure_6.7.png'],
'4.11': ['Figure_4.11.png'],
'15.26': ['Figure_15.26.png'],
'2.7': ['Figure_2.7.png'],
'15.11': ['Figure_15.11.png'],
'13.25': ['Figure_13.25.png'],
'14.34': ['Figure_14.34_C.png', 'Figure_14.34_A.jpg', 'Figure_14.34_B.png'],
'7.4': ['Figure_7.4.png'],
'14.29': ['Figure_14.29.png'],
'23.7': ['Figure_23.7.png'],
'22.2': ['Figure_22.2.png'],
'17.4': ['Figure_17.4.png'],
'23.6': ['Figure_23.6_A.png', 'Figure_23.6_B.png'],
'14.9': ['Figure_14.9.png'],
'15.27': ['Figure_15.27.png'],
'15.4': ['Figure_15.4_A.png', 'Figure_15.4_B.png'],
'10.11': ['Figure_10.11_B.png', 'Figure_10.11_A.png'],
'14.25': ['Figure_14.25.png'],
'17.5': ['Figure_17.5.png'],
'15.29': ['Figure_15.29.pdf'],
'10.8': ['Figure_10.8.png'],
'23.2': ['Figure_23.2.png'],
'3.2': ['Figure_3.2.jpg'],
'15.30': ['Figure_15.30.png'],
'14.7': ['Figure_14.7.png'],
'21.17': ['Figure_21.17.png'],
'20.9': ['Figure_20.9.png'],
'15.17': ['Figure_15.17_B.png', 'Figure_15.17_A.png'],
'8.2': ['Figure_8.2.png'],
'15.12': ['Figure_15.12_B.png', 'Figure_15.12_A.png'],
'15.13': ['Figure_15.13.png'],
'14.2': ['Figure_14.2.png'],
'3.15': ['Figure_3.15_B.png', 'Figure_3.15_A.png'],
'20.14': ['Figure_20.14_B.png', 'Figure_20.14_A.png'],
'15.34': ['Figure_15.34.png'],
'20.39': ['Figure_20.39.png'],
'9.3': ['Figure_9.3.png'],
'20.20': ['Figure_20.20.png'],
'13.19': ['Figure_13.19.png'],
'14.38': ['Figure_14.38_A.jpg', 'Figure_14.38_C.png', 'Figure_14.38_B.jpg'],
'2.19': ['Figure_2.19_B.png', 'Figure_2.19_A.png'],
'15.35': ['Figure_15.35_B.png',
'Figure_15.35_A.png',
'Figure_15.35_D.png',
'Figure_15.35_C.png'],
'8.8': ['Figure_8.8.png'],
'15.21': ['Figure_15.21.png'],
'20.16': ['Figure_20.16.png'],
'13.9': ['Figure_13.9.png'],
'22.4': ['Figure_22.4_B.png', 'Figure_22.4_A.png'],
'15.18': ['Figure_15.18.png'],
'14.41': ['Figure_14.41.png'],
'20.11': ['Figure_20.11.png'],
'15.36': ['Figure_15.36.png'],
'10.3': ['Figure_10.3.png'],
'23.1': ['Figure_23.1_B.png', 'Figure_23.1_A.png'],
'8.4': ['Figure_8.4_B.png', 'Figure_8.4_A.pdf'],
'20.44': ['Figure_20.44_B.png', 'Figure_20.44_A.png'],
'20.27': ['Figure_20.27_A.png', 'Figure_20.27_B.png'],
'14.6': ['Figure_14.6.png'],
'15.33': ['Figure_15.33_B.png', 'Figure_15.33_A.png'],
'20.42': ['Figure_20.42.png'],
'14.21': ['Figure_14.21.png'],
'14.10': ['Figure_14.10.png'],
'13.16': ['Figure_13.16.png'],
'13.3': ['Figure_13.3.png'],
'18.2': ['Figure_18.2_A.png', 'Figure_18.2_B.png'],
'23.9': ['Figure_23.9.png'],
'17.6': ['Figure_17.6.png'],
'1.4': ['Figure_1.4_A.png', 'Figure_1.4_B.png'],
'13.17': ['Figure_13.17_B.png', 'Figure_13.17_A.png'],
'20.24': ['Figure_20.24_A.png', 'Figure_20.24_B.png'],
'13.5': ['Figure_13.5.png'],
'19.4': ['Figure_19.4_A.png', 'Figure_19.4_B.png'],
'17.15': ['Figure_17.15.png'],
'17.16': ['Figure_17.16_B.png', 'Figure_17.16_A.png'],
'7.12': ['Figure_7.12.png'],
'1.11': ['Figure_1.11.png'],
'8.22': ['Figure_8.22.png'],
'2.21': ['Figure_2.21.png'],
'15.23': ['Figure_15.23.png'],
'19.12': ['Figure_19.12.png'],
'1.14': ['Figure_1.14_B.png', 'Figure_1.14_A.png'],
'15.16': ['Figure_15.16.pdf'],
'8.9': ['Figure_8.9.png'],
'14.4': ['Figure_14.4.png'],
'14.35': ['Figure_14.35.png'],
'1.15': ['Figure_1.15.png'],
'2.18': ['Figure_2.18_B.png', 'Figure_2.18_A.png'],
'19.15': ['Figure_19.15.png'],
'13.10': ['Figure_13.10.png'],
'19.3': ['Figure_19.3_B.png', 'Figure_19.3_A.png'],
'15.7': ['Figure_15.7.png'],
'22.1': ['Figure_22.1.png'],
'16.7': ['Figure_16.7.png'],
'14.32': ['Figure_14.32.png'],
'2.22': ['Figure_2.22.png'],
'20.40': ['Figure_20.40.png'],
'19.9': ['Figure_19.9.png'],
'22.6': ['Figure_22.6.png'],
'14.20': ['Figure_14.20.png'],
'20.15': ['Figure_20.15.png'],
'5.11': ['Figure_5.11.png'],
'14.36': ['Figure_14.36.jpg'],
'13.12': ['Figure_13.12.png'],
'14.23': ['Figure_14.23.png'],
'14.11': ['Figure_14.11.png'],
'9.7': ['Figure_9.7.png'],
'2.8': ['Figure_2.8.png'],
'20.28': ['Figure_20.28.png'],
'20.19': ['Figure_20.19_A.png', 'Figure_20.19_B.png'],
'17.12': ['Figure_17.12.png'],
'14.5': ['Figure_14.5.png'],
'2.20': ['Figure_2.20.png'],
'19.1': ['Figure_19.1.png'],
'8.20': ['Figure_8.20_A.png'],
'14.33': ['Figure_14.33.jpg'],
'8.19': ['Figure_8.19_B.png', 'Figure_8.19_A.png'],
'14.8': ['Figure_14.8_A.png', 'Figure_14.8_B.png'],
'6.6': ['Figure_6.6.png'],
'14.14': ['Figure_14.14.png'],
'19.7': ['Figure_19.7_A.png', 'Figure_19.7_B.png'],
'15.15': ['Figure_15.15.png'],
'10.12': ['Figure_10.12.png'],
'21.22': ['Figure_21.22.png'],
'8.10': ['Figure_8.10.png'],
'15.1': ['Figure_15.1.png'],
'15.9': ['Figure_15.9.png'],
'7.5': ['Figure_7.5.png'],
'14.30': ['Figure_14.30.png'],
'23.4': ['Figure_23.4.png'],
'15.24': ['Figure_15.24.png'],
'20.23': ['Figure_20.23.png'],
'5.9': ['Figure_5.9.png'],
'14.24': ['Figure_14.24.png'],
'16.4': ['Figure_16.4.png'],
'7.1': ['Figure_7.1.png']}
In [139]:
In [140]:
In [146]:
Out[146]:
1 12
2 4
3 4
4 5
5 5
6 3
7 4
8 9
9 3
10 6
11 9
12 3
13 13
14 17
15 20
16 4
17 3
18 5
19 6
20 10
21 3
22 5
In [ ]: