Kernel: Python [conda env:root] *
In [1]:
Get chapter names
In [2]:
Out[2]:
1 ['Introduction']
2 ['Probability: univariate models']
3 ['Probability: multivariate models']
4 ['Statistics']
5 ['Decision theory']
6 ['Information theory']
7 ['Linear algebra']
8 ['Optimization']
9 ['Linear discriminant analysis']
10 ['Logistic regression']
11 ['Linear regression']
12 ['Generalized linear models']
13 ['Neural networks for unstructured data']
14 ['Neural networks for images']
15 ['Neural networks for sequences']
16 ['Exemplar-based methods']
17 ['Kernel methods']
18 ['Trees']
19 ['Learning with fewer labeled examples']
20 ['Dimensionality reduction']
21 ['Clustering']
22 ['Recommender systems']
23 ['Graph embeddings']
In [3]:
Out[3]:
In [4]:
Create a Readme.md
In [16]:
Out[16]:
'\n# "Probabilistic Machine Learning: An Introduction"\n\n## Chapters\n|Chapter|Name| Notebooks|\n|-|-|-|\n| 1 | Introduction | [01/](01/) |\n| 2 | Probability: univariate models | [02/](02/) |\n| 3 | Probability: multivariate models | [03/](03/) |\n| 4 | Statistics | [04/](04/) |\n| 5 | Decision theory | [05/](05/) |\n| 6 | Information theory | [06/](06/) |\n| 7 | Linear algebra | [07/](07/) |\n| 8 | Optimization | [08/](08/) |\n| 9 | Linear discriminant analysis | [09/](09/) |\n| 10 | Logistic regression | [10/](10/) |\n| 11 | Linear regression | [11/](11/) |\n| 12 | Generalized linear models | [12/](12/) |\n| 13 | Neural networks for unstructured data | [13/](13/) |\n| 14 | Neural networks for images | [14/](14/) |\n| 15 | Neural networks for sequences | [15/](15/) |\n| 16 | Exemplar-based methods | [16/](16/) |\n| 17 | Kernel methods | [17/](17/) |\n| 18 | Trees | [18/](18/) |\n| 19 | Learning with fewer labeled examples | [19/](19/) |\n| 20 | Dimensionality reduction | [20/](20/) |\n| 21 | Clustering | [21/](21/) |\n| 22 | Recommender systems | [22/](22/) |\n| 23 | Graph embeddings | [23/](23/) |\n'
In [17]:
In [ ]:
In [ ]: