Path: blob/master/internal/book1/figures_nb_mapping_book1.csv
1192 views
key,url 1.3,iris_plot.ipynb 1.4,iris_dtree.ipynb 1.5,linreg_residuals_plot.ipynb 1.6,linreg_2d_surface_demo.ipynb 1.7,linreg_poly_vs_degree.ipynb 1.8,iris_kmeans.ipynb 1.9,iris_pca.ipynb 1.12,fig_1_12.ipynb 1.13,fig_1_13.ipynb 2.1,discrete_prob_dist_plot.ipynb 2.2,fig_2_2.ipynb 2.4,bimodal_dist_plot.ipynb 2.5,anscombes_quartet.ipynb 2.6,datasaurus_dozen.ipynb 2.9,binom_dist_plot.ipynb 2.10,activation_fun_plot.ipynb 2.11,iris_logreg.ipynb 2.12,softmax_plot.ipynb 2.13,iris_logreg.ipynb 2.14,linreg_1d_hetero_tfp.ipynb 2.15,student_laplace_pdf_plot.ipynb 2.16,robust_pdf_plot.ipynb 2.17,fig_2_17.ipynb 2.23,centralLimitDemo.ipynb 2.24,change_of_vars_demo1d.ipynb 3.3,simpsons_paradox.ipynb 3.5,gauss_plot_2d.ipynb 3.6,gauss_plot_2d.ipynb 3.7,gauss_imputation_known_params_demo.ipynb 3.8,gauss_infer_1d.ipynb 3.9,gauss_infer_2d.ipynb 3.10,sensor_fusion_2d.ipynb 3.11,gmm_plot_demo.ipynb 3.12,gmm_2d.ipynb 3.13,mix_bernoulli_em_mnist.ipynb 4.1,iris_cov_mat.ipynb 4.2,hinge_loss_plot.ipynb 4.3,ema_demo.ipynb 4.4,shrinkcov_plots.ipynb 4.5,linreg_poly_ridge.ipynb 4.7,polyfitRidgeCV.ipynb 4.8,imdb_mlp_bow_tf.ipynb 4.9,linreg_poly_vs_n.ipynb 4.10,beta_binom_post_plot.ipynb 4.12,beta_binom_post_pred_plot.ipynb 4.13,mixbetademo.ipynb 4.14,fig_4_14.ipynb 4.15,dirichlet_samples_plot.ipynb 4.16,gauss_infer_1d.ipynb 4.17,gauss_infer_2d.ipynb 4.18,betaHPD.ipynb 4.19,postDensityIntervals.ipynb 4.20,fig_4_20.ipynb 4.22,laplace_approx_beta_binom_jax.ipynb 4.23,bootstrapDemoBer.ipynb 4.24,samplingDistributionGaussianShrinkage.ipynb 4.25,biasVarModelComplexity3.ipynb 5.2,fig_5_2.ipynb 5.3,huberLossPlot.ipynb 5.4,coins_model_sel_demo.ipynb 5.5,linreg_eb_modelsel_vs_n.ipynb 5.6,linreg_eb_modelsel_vs_n.ipynb 5.8,riskFnGauss.ipynb 5.10,fig_5_10.ipynb 6.1,bernoulli_entropy_fig.ipynb 6.2,seq_logo_demo.ipynb 6.3,KLfwdReverseMixGauss.ipynb 6.6,MIC_correlation_2d.ipynb 7.6,gaussEvec.ipynb 7.7,height_weight_whiten_plot.ipynb 7.9,svd_image_demo.ipynb 7.10,svd_image_demo.ipynb 8.1,fig_8_1.ipynb 8.7,smooth-vs-nonsmooth-1d.ipynb 8.11,steepestDescentDemo.ipynb 8.12,lineSearchConditionNum.ipynb 8.14,fig_8_14.ipynb 8.16,lms_demo.ipynb 8.17,lrschedule_tf.ipynb 8.18,learning_rate_plot.ipynb 8.23,emLogLikelihoodMax.ipynb 8.25,mix_gauss_demo_faithful.ipynb 8.26,fig_8_26.ipynb 8.27,gmm_lik_surface_plot.ipynb 9.1,discrim_analysis_dboundaries_plot2.ipynb 9.2,discrim_analysis_dboundaries_plot2.ipynb 9.4,fisher_lda_demo.ipynb 9.5,fisher_discrim_vowel.ipynb 9.6,naive_bayes_mnist_jax.ipynb 9.7,naive_bayes_mnist_jax.ipynb 9.8,generativeVsDiscrim.ipynb 10.1,iris_logreg.ipynb 10.2,sigmoid_2d_plot.ipynb 10.4,logreg_poly_demo.ipynb 10.5,iris_logreg_loss_surface.ipynb 10.6,logreg_poly_demo.ipynb 10.7,logreg_multiclass_demo.ipynb 10.10,logreg_iris_bayes_robust_1d_pymc3.ipynb 10.13,logreg_laplace_demo.ipynb 10.14,logreg_laplace_demo.ipynb 11.1,linreg_poly_vs_degree.ipynb 11.2,linreg_contours_sse_plot.ipynb 11.4,linregOnlineDemo.ipynb 11.5,linreg_poly_vs_degree.ipynb 11.6,linreg_poly_vs_degree.ipynb 11.7,geom_ridge.ipynb 11.10,fig_11_10.ipynb 11.11,prostate_comparison.ipynb 11.12,prostate_comparison.ipynb 11.13,sparse_sensing_demo.ipynb 11.14,groupLassoDemo.ipynb 11.15,groupLassoDemo.ipynb 11.16,splines_basis_weighted.ipynb 11.17,splines_basis_heatmap.ipynb 11.18,splines_cherry_blossoms.ipynb 11.19,fig_11_19.ipynb 11.20,linreg_2d_bayes_demo.ipynb 11.21,linreg_post_pred_plot.ipynb 11.22,linreg_2d_bayes_centering_pymc3.ipynb 11.23,multi_collinear_legs_numpyro.ipynb 11.24,multi_collinear_legs_numpyro.ipynb 12.1,poisson_regression_insurance.ipynb 12.2,poisson_regression_insurance.ipynb 13.1,xor_heaviside.ipynb 13.2,activation_fun_plot.ipynb 13.4,mlp_mnist_tf.ipynb 13.6,mlp_1d_regression_hetero_tfp.ipynb 13.14,activation_fun_deriv_jax.ipynb 13.17,sparse_mlp.ipynb 13.20,sgd_minima_variance.ipynb 13.21,logregXorDemo.ipynb 13.22,linregRbfDemo.ipynb 13.23,mixexpDemoOneToMany.ipynb 14.5,conv2d_jax.ipynb 14.9,conv2d_jax.ipynb 14.17,cnn_mnist_tf.ipynb 15.2,rnn_jax.ipynb 15.17,kernel_regression_attention.ipynb 15.25,positional_encoding_jax.ipynb 16.1,knn_voronoi_plot.ipynb 16.2,knn_classify_demo.ipynb 16.3,curse_dimensionality_plot.ipynb 16.8,smoothingKernelPlot.ipynb 16.9,parzen_window_demo2.ipynb 16.10,kernelRegressionDemo.ipynb 17.1,gprDemoArd.ipynb 17.2,gpKernelPlot.ipynb 17.3,gpKernelPlot.ipynb 17.7,gprDemoNoiseFree.ipynb 17.8,gprDemoChangeHparams.ipynb 17.9,gpr_demo_marglik.ipynb 17.10,gp_classify_iris_1d_pymc3.ipynb 17.11,gp_classify_spaceflu_1d_pymc3.ipynb 17.14,svm_classifier_feature_scaling.ipynb 17.17,svm_classifier_2d.ipynb 17.18,svmCgammaDemo.ipynb 17.19,huberLossPlot.ipynb 17.20,svm_regression_1d.ipynb 17.21,kernelBinaryClassifDemo.ipynb 17.22,rvm_regression_1d.ipynb 17.23,rvm_regression_1d.ipynb 18.1,regtreeSurfaceDemo.ipynb 18.3,dtree_sensitivity.ipynb 18.4,fig_18_4.ipynb 18.5,spam_tree_ensemble_compare.ipynb 18.6,boosted_regr_trees.ipynb 18.7,hinge_loss_plot.ipynb 18.8,rf_feature_importance_mnist.ipynb 18.9,spam_tree_ensemble_interpret.ipynb 18.10,spam_tree_ensemble_interpret.ipynb 19.1,image_augmentation_jax.ipynb 19.14,hbayes_maml.ipynb 20.1,pcaDemo2d.ipynb 20.2,pca_digits.ipynb 20.3,pcaImageDemo.ipynb 20.4,pca_projected_variance.ipynb 20.5,pcaStandardization.ipynb 20.6,pcaOverfitDemo.ipynb 20.7,pcaOverfitDemo.ipynb 20.8,pcaOverfitDemo.ipynb 20.10,pcaEmStepByStep.ipynb 20.12,mixPpcaDemo.ipynb 20.13,binary_fa_demo.ipynb 20.17,ae_mnist_tf.ipynb 20.18,ae_mnist_tf.ipynb 20.19,ae_mnist_tf.ipynb 20.21,ae_mnist_tf.ipynb 20.24,fig_20_24.ipynb 20.25,fig_20_25.ipynb 20.26,fig_20_26.ipynb 20.27,vae_mnist_conv_lightning.ipynb 20.30,fig_20_30.ipynb 20.31,fig_20_31.ipynb 20.33,fig_20_33.ipynb 20.34,manifold_swiss_sklearn.ipynb 20.35,kpcaScholkopf.ipynb 20.36,fig_20_36.ipynb 20.37,fig_20_37.ipynb 20.38,fig_20_38.ipynb 20.41,fig_20_41.ipynb 21.2,agglomDemo.ipynb 21.4,hclust_yeast_demo.ipynb 21.5,yeast_data_viz.ipynb 21.6,hclust_yeast_demo.ipynb 21.7,kmeans_voronoi.ipynb 21.8,kmeans_yeast_demo.ipynb 21.9,vqDemo.ipynb 21.10,kmeans_minibatch.ipynb 21.11,fig_21_11.ipynb 21.12,kmeans_silhouette.ipynb 21.13,kmeans_silhouette.ipynb 21.14,gmm_2d.ipynb 21.15,gmm_identifiability_pymc3.ipynb 21.16,gmm_identifiability_pymc3.ipynb 21.17,gmm_chooseK_pymc3.ipynb 21.18,gmm_chooseK_pymc3.ipynb 21.19,spectral_clustering_demo.ipynb 22.3,matrix_factorization_recommender.ipynb 22.4,matrix_factorization_recommender.ipynb