Path: blob/master/internal/book1/figures_nb_mapping_book1_urls.csv
1192 views
key,url 1.3,https://probml.github.io/notebooks#iris_plot.ipynb 1.4,https://probml.github.io/notebooks#iris_dtree.ipynb 1.5,https://probml.github.io/notebooks#linreg_residuals_plot.ipynb 1.6,https://probml.github.io/notebooks#linreg_2d_surface_demo.ipynb 1.7,https://probml.github.io/notebooks#linreg_poly_vs_degree.ipynb 1.8,https://probml.github.io/notebooks#iris_kmeans.ipynb 1.9,https://probml.github.io/notebooks#iris_pca.ipynb 1.12,https://probml.github.io/notebooks#fig_1_12.ipynb 1.13,https://probml.github.io/notebooks#fig_1_13.ipynb 2.1,https://probml.github.io/notebooks#discrete_prob_dist_plot.ipynb 2.2,https://probml.github.io/notebooks#fig_2_2.ipynb 2.4,https://probml.github.io/notebooks#bimodal_dist_plot.ipynb 2.5,https://probml.github.io/notebooks#anscombes_quartet.ipynb 2.6,https://probml.github.io/notebooks#datasaurus_dozen.ipynb 2.9,https://probml.github.io/notebooks#binom_dist_plot.ipynb 2.10,https://probml.github.io/notebooks#activation_fun_plot.ipynb 2.11,https://probml.github.io/notebooks#iris_logreg.ipynb 2.12,https://probml.github.io/notebooks#softmax_plot.ipynb 2.13,https://probml.github.io/notebooks#iris_logreg.ipynb 2.14,https://probml.github.io/notebooks#linreg_1d_hetero_tfp.ipynb 2.15,https://probml.github.io/notebooks#student_laplace_pdf_plot.ipynb 2.16,https://probml.github.io/notebooks#robust_pdf_plot.ipynb 2.17,https://probml.github.io/notebooks#fig_2_17.ipynb 2.23,https://probml.github.io/notebooks#centralLimitDemo.ipynb 2.24,https://probml.github.io/notebooks#change_of_vars_demo1d.ipynb 3.3,https://probml.github.io/notebooks#simpsons_paradox.ipynb 3.5,https://probml.github.io/notebooks#gauss_plot_2d.ipynb 3.6,https://probml.github.io/notebooks#gauss_plot_2d.ipynb 3.7,https://probml.github.io/notebooks#gauss_imputation_known_params_demo.ipynb 3.8,https://probml.github.io/notebooks#gauss_infer_1d.ipynb 3.9,https://probml.github.io/notebooks#gauss_infer_2d.ipynb 3.10,https://probml.github.io/notebooks#sensor_fusion_2d.ipynb 3.11,https://probml.github.io/notebooks#gmm_plot_demo.ipynb 3.12,https://probml.github.io/notebooks#gmm_2d.ipynb 3.13,https://probml.github.io/notebooks#mix_bernoulli_em_mnist.ipynb 4.1,https://probml.github.io/notebooks#iris_cov_mat.ipynb 4.2,https://probml.github.io/notebooks#hinge_loss_plot.ipynb 4.3,https://probml.github.io/notebooks#ema_demo.ipynb 4.4,https://probml.github.io/notebooks#shrinkcov_plots.ipynb 4.5,https://probml.github.io/notebooks#linreg_poly_ridge.ipynb 4.7,https://probml.github.io/notebooks#polyfitRidgeCV.ipynb 4.8,https://probml.github.io/notebooks#imdb_mlp_bow_tf.ipynb 4.9,https://probml.github.io/notebooks#linreg_poly_vs_n.ipynb 4.10,https://probml.github.io/notebooks#beta_binom_post_plot.ipynb 4.12,https://probml.github.io/notebooks#beta_binom_post_pred_plot.ipynb 4.13,https://probml.github.io/notebooks#mixbetademo.ipynb 4.14,https://probml.github.io/notebooks#fig_4_14.ipynb 4.15,https://probml.github.io/notebooks#dirichlet_samples_plot.ipynb 4.16,https://probml.github.io/notebooks#gauss_infer_1d.ipynb 4.17,https://probml.github.io/notebooks#gauss_infer_2d.ipynb 4.18,https://probml.github.io/notebooks#betaHPD.ipynb 4.19,https://probml.github.io/notebooks#postDensityIntervals.ipynb 4.20,https://probml.github.io/notebooks#fig_4_20.ipynb 4.22,https://probml.github.io/notebooks#laplace_approx_beta_binom_jax.ipynb 4.23,https://probml.github.io/notebooks#bootstrapDemoBer.ipynb 4.24,https://probml.github.io/notebooks#samplingDistributionGaussianShrinkage.ipynb 4.25,https://probml.github.io/notebooks#biasVarModelComplexity3.ipynb 5.2,https://probml.github.io/notebooks#fig_5_2.ipynb 5.3,https://probml.github.io/notebooks#huberLossPlot.ipynb 5.4,https://probml.github.io/notebooks#coins_model_sel_demo.ipynb 5.5,https://probml.github.io/notebooks#linreg_eb_modelsel_vs_n.ipynb 5.6,https://probml.github.io/notebooks#linreg_eb_modelsel_vs_n.ipynb 5.8,https://probml.github.io/notebooks#riskFnGauss.ipynb 5.10,https://probml.github.io/notebooks#fig_5_10.ipynb 6.1,https://probml.github.io/notebooks#bernoulli_entropy_fig.ipynb 6.2,https://probml.github.io/notebooks#seq_logo_demo.ipynb 6.3,https://probml.github.io/notebooks#KLfwdReverseMixGauss.ipynb 6.6,https://probml.github.io/notebooks#MIC_correlation_2d.ipynb 7.6,https://probml.github.io/notebooks#gaussEvec.ipynb 7.7,https://probml.github.io/notebooks#height_weight_whiten_plot.ipynb 7.9,https://probml.github.io/notebooks#svd_image_demo.ipynb 7.10,https://probml.github.io/notebooks#svd_image_demo.ipynb 8.1,https://probml.github.io/notebooks#fig_8_1.ipynb 8.7,https://probml.github.io/notebooks#smooth-vs-nonsmooth-1d.ipynb 8.11,https://probml.github.io/notebooks#steepestDescentDemo.ipynb 8.12,https://probml.github.io/notebooks#lineSearchConditionNum.ipynb 8.14,https://probml.github.io/notebooks#fig_8_14.ipynb 8.16,https://probml.github.io/notebooks#lms_demo.ipynb 8.17,https://probml.github.io/notebooks#lrschedule_tf.ipynb 8.18,https://probml.github.io/notebooks#learning_rate_plot.ipynb 8.23,https://probml.github.io/notebooks#emLogLikelihoodMax.ipynb 8.25,https://probml.github.io/notebooks#mix_gauss_demo_faithful.ipynb 8.26,https://probml.github.io/notebooks#fig_8_26.ipynb 8.27,https://probml.github.io/notebooks#gmm_lik_surface_plot.ipynb 9.1,https://probml.github.io/notebooks#discrim_analysis_dboundaries_plot2.ipynb 9.2,https://probml.github.io/notebooks#discrim_analysis_dboundaries_plot2.ipynb 9.4,https://probml.github.io/notebooks#fisher_lda_demo.ipynb 9.5,https://probml.github.io/notebooks#fisher_discrim_vowel.ipynb 9.6,https://probml.github.io/notebooks#naive_bayes_mnist_jax.ipynb 9.7,https://probml.github.io/notebooks#naive_bayes_mnist_jax.ipynb 9.8,https://probml.github.io/notebooks#generativeVsDiscrim.ipynb 10.1,https://probml.github.io/notebooks#iris_logreg.ipynb 10.2,https://probml.github.io/notebooks#sigmoid_2d_plot.ipynb 10.4,https://probml.github.io/notebooks#logreg_poly_demo.ipynb 10.5,https://probml.github.io/notebooks#iris_logreg_loss_surface.ipynb 10.6,https://probml.github.io/notebooks#logreg_poly_demo.ipynb 10.7,https://probml.github.io/notebooks#logreg_multiclass_demo.ipynb 10.10,https://probml.github.io/notebooks#logreg_iris_bayes_robust_1d_pymc3.ipynb 10.13,https://probml.github.io/notebooks#logreg_laplace_demo.ipynb 10.14,https://probml.github.io/notebooks#logreg_laplace_demo.ipynb 11.1,https://probml.github.io/notebooks#linreg_poly_vs_degree.ipynb 11.2,https://probml.github.io/notebooks#linreg_contours_sse_plot.ipynb 11.4,https://probml.github.io/notebooks#linregOnlineDemo.ipynb 11.5,https://probml.github.io/notebooks#linreg_poly_vs_degree.ipynb 11.6,https://probml.github.io/notebooks#linreg_poly_vs_degree.ipynb 11.7,https://probml.github.io/notebooks#geom_ridge.ipynb 11.10,https://probml.github.io/notebooks#fig_11_10.ipynb 11.11,https://probml.github.io/notebooks#prostate_comparison.ipynb 11.12,https://probml.github.io/notebooks#prostate_comparison.ipynb 11.13,https://probml.github.io/notebooks#sparse_sensing_demo.ipynb 11.14,https://probml.github.io/notebooks#groupLassoDemo.ipynb 11.15,https://probml.github.io/notebooks#groupLassoDemo.ipynb 11.16,https://probml.github.io/notebooks#splines_basis_weighted.ipynb 11.17,https://probml.github.io/notebooks#splines_basis_heatmap.ipynb 11.18,https://probml.github.io/notebooks#splines_cherry_blossoms.ipynb 11.19,https://probml.github.io/notebooks#fig_11_19.ipynb 11.20,https://probml.github.io/notebooks#linreg_2d_bayes_demo.ipynb 11.21,https://probml.github.io/notebooks#linreg_post_pred_plot.ipynb 11.22,https://probml.github.io/notebooks#linreg_2d_bayes_centering_pymc3.ipynb 11.23,https://probml.github.io/notebooks#multi_collinear_legs_numpyro.ipynb 11.24,https://probml.github.io/notebooks#multi_collinear_legs_numpyro.ipynb 12.1,https://probml.github.io/notebooks#poisson_regression_insurance.ipynb 12.2,https://probml.github.io/notebooks#poisson_regression_insurance.ipynb 13.1,https://probml.github.io/notebooks#xor_heaviside.ipynb 13.2,https://probml.github.io/notebooks#activation_fun_plot.ipynb 13.4,https://probml.github.io/notebooks#mlp_mnist_tf.ipynb 13.6,https://probml.github.io/notebooks#mlp_1d_regression_hetero_tfp.ipynb 13.14,https://probml.github.io/notebooks#activation_fun_deriv_jax.ipynb 13.17,https://probml.github.io/notebooks#sparse_mlp.ipynb 13.20,https://probml.github.io/notebooks#sgd_minima_variance.ipynb 13.21,https://probml.github.io/notebooks#logregXorDemo.ipynb 13.22,https://probml.github.io/notebooks#linregRbfDemo.ipynb 13.23,https://probml.github.io/notebooks#mixexpDemoOneToMany.ipynb 14.5,https://probml.github.io/notebooks#conv2d_jax.ipynb 14.9,https://probml.github.io/notebooks#conv2d_jax.ipynb 14.17,https://probml.github.io/notebooks#cnn_mnist_tf.ipynb 15.2,https://probml.github.io/notebooks#rnn_jax.ipynb 15.17,https://probml.github.io/notebooks#kernel_regression_attention.ipynb 15.25,https://probml.github.io/notebooks#positional_encoding_jax.ipynb 16.1,https://probml.github.io/notebooks#knn_voronoi_plot.ipynb 16.2,https://probml.github.io/notebooks#knn_classify_demo.ipynb 16.3,https://probml.github.io/notebooks#curse_dimensionality_plot.ipynb 16.8,https://probml.github.io/notebooks#smoothingKernelPlot.ipynb 16.9,https://probml.github.io/notebooks#parzen_window_demo2.ipynb 16.10,https://probml.github.io/notebooks#kernelRegressionDemo.ipynb 17.1,https://probml.github.io/notebooks#gprDemoArd.ipynb 17.2,https://probml.github.io/notebooks#gpKernelPlot.ipynb 17.3,https://probml.github.io/notebooks#gpKernelPlot.ipynb 17.7,https://probml.github.io/notebooks#gprDemoNoiseFree.ipynb 17.8,https://probml.github.io/notebooks#gprDemoChangeHparams.ipynb 17.9,https://probml.github.io/notebooks#gpr_demo_marglik.ipynb 17.10,https://probml.github.io/notebooks#gp_classify_iris_1d_pymc3.ipynb 17.11,https://probml.github.io/notebooks#gp_classify_spaceflu_1d_pymc3.ipynb 17.14,https://probml.github.io/notebooks#svm_classifier_feature_scaling.ipynb 17.17,https://probml.github.io/notebooks#svm_classifier_2d.ipynb 17.18,https://probml.github.io/notebooks#svmCgammaDemo.ipynb 17.19,https://probml.github.io/notebooks#huberLossPlot.ipynb 17.20,https://probml.github.io/notebooks#svm_regression_1d.ipynb 17.21,https://probml.github.io/notebooks#kernelBinaryClassifDemo.ipynb 17.22,https://probml.github.io/notebooks#rvm_regression_1d.ipynb 17.23,https://probml.github.io/notebooks#rvm_regression_1d.ipynb 18.1,https://probml.github.io/notebooks#regtreeSurfaceDemo.ipynb 18.3,https://probml.github.io/notebooks#dtree_sensitivity.ipynb 18.4,https://probml.github.io/notebooks#fig_18_4.ipynb 18.5,https://probml.github.io/notebooks#spam_tree_ensemble_compare.ipynb 18.6,https://probml.github.io/notebooks#boosted_regr_trees.ipynb 18.7,https://probml.github.io/notebooks#hinge_loss_plot.ipynb 18.8,https://probml.github.io/notebooks#rf_feature_importance_mnist.ipynb 18.9,https://probml.github.io/notebooks#spam_tree_ensemble_interpret.ipynb 18.10,https://probml.github.io/notebooks#spam_tree_ensemble_interpret.ipynb 19.1,https://probml.github.io/notebooks#image_augmentation_jax.ipynb 19.14,https://probml.github.io/notebooks#hbayes_maml.ipynb 20.1,https://probml.github.io/notebooks#pcaDemo2d.ipynb 20.2,https://probml.github.io/notebooks#pca_digits.ipynb 20.3,https://probml.github.io/notebooks#pcaImageDemo.ipynb 20.4,https://probml.github.io/notebooks#pca_projected_variance.ipynb 20.5,https://probml.github.io/notebooks#pcaStandardization.ipynb 20.6,https://probml.github.io/notebooks#pcaOverfitDemo.ipynb 20.7,https://probml.github.io/notebooks#pcaOverfitDemo.ipynb 20.8,https://probml.github.io/notebooks#pcaOverfitDemo.ipynb 20.10,https://probml.github.io/notebooks#pcaEmStepByStep.ipynb 20.12,https://probml.github.io/notebooks#mixPpcaDemo.ipynb 20.13,https://probml.github.io/notebooks#binary_fa_demo.ipynb 20.17,https://probml.github.io/notebooks#ae_mnist_tf.ipynb 20.18,https://probml.github.io/notebooks#ae_mnist_tf.ipynb 20.19,https://probml.github.io/notebooks#ae_mnist_tf.ipynb 20.21,https://probml.github.io/notebooks#ae_mnist_tf.ipynb 20.24,https://probml.github.io/notebooks#fig_20_24.ipynb 20.25,https://probml.github.io/notebooks#fig_20_25.ipynb 20.26,https://probml.github.io/notebooks#fig_20_26.ipynb 20.27,https://probml.github.io/notebooks#vae_mnist_conv_lightning.ipynb 20.30,https://probml.github.io/notebooks#fig_20_30.ipynb 20.31,https://probml.github.io/notebooks#fig_20_31.ipynb 20.33,https://probml.github.io/notebooks#fig_20_33.ipynb 20.34,https://probml.github.io/notebooks#manifold_swiss_sklearn.ipynb 20.35,https://probml.github.io/notebooks#kpcaScholkopf.ipynb 20.36,https://probml.github.io/notebooks#fig_20_36.ipynb 20.37,https://probml.github.io/notebooks#fig_20_37.ipynb 20.38,https://probml.github.io/notebooks#fig_20_38.ipynb 20.41,https://probml.github.io/notebooks#fig_20_41.ipynb 21.2,https://probml.github.io/notebooks#agglomDemo.ipynb 21.4,https://probml.github.io/notebooks#hclust_yeast_demo.ipynb 21.5,https://probml.github.io/notebooks#yeast_data_viz.ipynb 21.6,https://probml.github.io/notebooks#hclust_yeast_demo.ipynb 21.7,https://probml.github.io/notebooks#kmeans_voronoi.ipynb 21.8,https://probml.github.io/notebooks#kmeans_yeast_demo.ipynb 21.9,https://probml.github.io/notebooks#vqDemo.ipynb 21.10,https://probml.github.io/notebooks#kmeans_minibatch.ipynb 21.11,https://probml.github.io/notebooks#fig_21_11.ipynb 21.12,https://probml.github.io/notebooks#kmeans_silhouette.ipynb 21.13,https://probml.github.io/notebooks#kmeans_silhouette.ipynb 21.14,https://probml.github.io/notebooks#gmm_2d.ipynb 21.15,https://probml.github.io/notebooks#gmm_identifiability_pymc3.ipynb 21.16,https://probml.github.io/notebooks#gmm_identifiability_pymc3.ipynb 21.17,https://probml.github.io/notebooks#gmm_chooseK_pymc3.ipynb 21.18,https://probml.github.io/notebooks#gmm_chooseK_pymc3.ipynb 21.19,https://probml.github.io/notebooks#spectral_clustering_demo.ipynb 22.3,https://probml.github.io/notebooks#matrix_factorization_recommender.ipynb 22.4,https://probml.github.io/notebooks#matrix_factorization_recommender.ipynb