Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
probml
GitHub Repository: probml/pyprobml
Path: blob/master/internal/book1/non_figures_nb_mapping_book1_urls.csv
1192 views
    key,url
bagging_trees.ipynb,https://probml.github.io/notebooks#bagging_trees.ipynb
regtreeSurfaceDemo.ipynb,https://probml.github.io/notebooks#regtreeSurfaceDemo.ipynb
spam_tree_ensemble_interpret.ipynb,https://probml.github.io/notebooks#spam_tree_ensemble_interpret.ipynb
boosted_regr_trees.ipynb,https://probml.github.io/notebooks#boosted_regr_trees.ipynb
rf_demo_2d.ipynb,https://probml.github.io/notebooks#rf_demo_2d.ipynb
dtree_sensitivity.ipynb,https://probml.github.io/notebooks#dtree_sensitivity.ipynb
feature_importance_trees_tutorial.ipynb,https://probml.github.io/notebooks#feature_importance_trees_tutorial.ipynb
spam_tree_ensemble_compare.ipynb,https://probml.github.io/notebooks#spam_tree_ensemble_compare.ipynb
rf_feature_importance_mnist.ipynb,https://probml.github.io/notebooks#rf_feature_importance_mnist.ipynb
fig_18_4.ipynb,https://probml.github.io/notebooks#fig_18_4.ipynb
naive_bayes_mnist_torch.ipynb,https://probml.github.io/notebooks#naive_bayes_mnist_torch.ipynb
discrim_analysis_dboundaries_plot2.ipynb,https://probml.github.io/notebooks#discrim_analysis_dboundaries_plot2.ipynb
fisher_lda_demo.ipynb,https://probml.github.io/notebooks#fisher_lda_demo.ipynb
fisher_discrim_vowel.ipynb,https://probml.github.io/notebooks#fisher_discrim_vowel.ipynb
generativeVsDiscrim.ipynb,https://probml.github.io/notebooks#generativeVsDiscrim.ipynb
naive_bayes_mnist_jax.ipynb,https://probml.github.io/notebooks#naive_bayes_mnist_jax.ipynb
simpsons_paradox.ipynb,https://probml.github.io/notebooks#simpsons_paradox.ipynb
sprinkler_pgm.ipynb,https://probml.github.io/notebooks#sprinkler_pgm.ipynb
gauss_infer_2d.ipynb,https://probml.github.io/notebooks#gauss_infer_2d.ipynb
mix_bernoulli_em_mnist.ipynb,https://probml.github.io/notebooks#mix_bernoulli_em_mnist.ipynb
mix_bernoulli_sgd_mnist.ipynb,https://probml.github.io/notebooks#mix_bernoulli_sgd_mnist.ipynb
sensor_fusion_2d.ipynb,https://probml.github.io/notebooks#sensor_fusion_2d.ipynb
gauss_plot_2d.ipynb,https://probml.github.io/notebooks#gauss_plot_2d.ipynb
gauss_imputation_known_params_demo.ipynb,https://probml.github.io/notebooks#gauss_imputation_known_params_demo.ipynb
gmm_2d.ipynb,https://probml.github.io/notebooks#gmm_2d.ipynb
correlation2d.ipynb,https://probml.github.io/notebooks#correlation2d.ipynb
gauss_infer_1d.ipynb,https://probml.github.io/notebooks#gauss_infer_1d.ipynb
gmm_plot_demo.ipynb,https://probml.github.io/notebooks#gmm_plot_demo.ipynb
finetune_cnn_jax.ipynb,https://probml.github.io/notebooks#finetune_cnn_jax.ipynb
finetune_cnn_torch.ipynb,https://probml.github.io/notebooks#finetune_cnn_torch.ipynb
image_augmentation_torch.ipynb,https://probml.github.io/notebooks#image_augmentation_torch.ipynb
pre_trained_image_classifier_torch.ipynb,https://probml.github.io/notebooks#pre_trained_image_classifier_torch.ipynb
image_augmentation_jax.ipynb,https://probml.github.io/notebooks#image_augmentation_jax.ipynb
hbayes_maml.ipynb,https://probml.github.io/notebooks#hbayes_maml.ipynb
fig_4_14.ipynb,https://probml.github.io/notebooks#fig_4_14.ipynb
pymc3_intro.ipynb,https://probml.github.io/notebooks#pymc3_intro.ipynb
biasVarModelComplexity3.ipynb,https://probml.github.io/notebooks#biasVarModelComplexity3.ipynb
beta_binom_post_pred_plot.ipynb,https://probml.github.io/notebooks#beta_binom_post_pred_plot.ipynb
mixbetademo.ipynb,https://probml.github.io/notebooks#mixbetademo.ipynb
laplace_approx_beta_binom_pymc4.ipynb,https://probml.github.io/notebooks#laplace_approx_beta_binom_pymc4.ipynb
polyfitRidgeCV.ipynb,https://probml.github.io/notebooks#polyfitRidgeCV.ipynb
beta_binom_approx_post_pymc3.ipynb,https://probml.github.io/notebooks#beta_binom_approx_post_pymc3.ipynb
iris_cov_mat.ipynb,https://probml.github.io/notebooks#iris_cov_mat.ipynb
samplingDistributionGaussianShrinkage.ipynb,https://probml.github.io/notebooks#samplingDistributionGaussianShrinkage.ipynb
laplace_approx_beta_binom_jax.ipynb,https://probml.github.io/notebooks#laplace_approx_beta_binom_jax.ipynb
dirichlet_3d_triangle_plot.ipynb,https://probml.github.io/notebooks#dirichlet_3d_triangle_plot.ipynb
shrinkcov_plots.ipynb,https://probml.github.io/notebooks#shrinkcov_plots.ipynb
bayes_intro.ipynb,https://probml.github.io/notebooks#bayes_intro.ipynb
hinge_loss_plot.ipynb,https://probml.github.io/notebooks#hinge_loss_plot.ipynb
laplace_approx_beta_binom_pymc3.ipynb,https://probml.github.io/notebooks#laplace_approx_beta_binom_pymc3.ipynb
beta_credible_int_demo.ipynb,https://probml.github.io/notebooks#beta_credible_int_demo.ipynb
imdb_mlp_bow_tf.ipynb,https://probml.github.io/notebooks#imdb_mlp_bow_tf.ipynb
dirichlet_samples_plot.ipynb,https://probml.github.io/notebooks#dirichlet_samples_plot.ipynb
linreg_poly_vs_n.ipynb,https://probml.github.io/notebooks#linreg_poly_vs_n.ipynb
linreg_poly_ridge.ipynb,https://probml.github.io/notebooks#linreg_poly_ridge.ipynb
betaHPD.ipynb,https://probml.github.io/notebooks#betaHPD.ipynb
bootstrapDemoBer.ipynb,https://probml.github.io/notebooks#bootstrapDemoBer.ipynb
logreg_iris_1d.ipynb,https://probml.github.io/notebooks#logreg_iris_1d.ipynb
dirichlet_3d_spiky_plot.ipynb,https://probml.github.io/notebooks#dirichlet_3d_spiky_plot.ipynb
beta_binom_post_plot.ipynb,https://probml.github.io/notebooks#beta_binom_post_plot.ipynb
postDensityIntervals.ipynb,https://probml.github.io/notebooks#postDensityIntervals.ipynb
ema_demo.ipynb,https://probml.github.io/notebooks#ema_demo.ipynb
logreg_iris_bayes_1d_pymc3.ipynb,https://probml.github.io/notebooks#logreg_iris_bayes_1d_pymc3.ipynb
fig_4_20.ipynb,https://probml.github.io/notebooks#fig_4_20.ipynb
kernelRegressionDemo.ipynb,https://probml.github.io/notebooks#kernelRegressionDemo.ipynb
parzen_window_demo2.ipynb,https://probml.github.io/notebooks#parzen_window_demo2.ipynb
curse_dimensionality_plot.ipynb,https://probml.github.io/notebooks#curse_dimensionality_plot.ipynb
smoothingKernelPlot.ipynb,https://probml.github.io/notebooks#smoothingKernelPlot.ipynb
knn_voronoi_plot.ipynb,https://probml.github.io/notebooks#knn_voronoi_plot.ipynb
knn_classify_demo.ipynb,https://probml.github.io/notebooks#knn_classify_demo.ipynb
knn_demo.ipynb,https://probml.github.io/notebooks#knn_demo.ipynb
fig_11_19.ipynb,https://probml.github.io/notebooks#fig_11_19.ipynb
splines_basis_weighted.ipynb,https://probml.github.io/notebooks#splines_basis_weighted.ipynb
linreg_2d_bayes_centering_pymc3.ipynb,https://probml.github.io/notebooks#linreg_2d_bayes_centering_pymc3.ipynb
groupLassoDemo.ipynb,https://probml.github.io/notebooks#groupLassoDemo.ipynb
ridgePathProstate.ipynb,https://probml.github.io/notebooks#ridgePathProstate.ipynb
linregRobustDemoCombined.ipynb,https://probml.github.io/notebooks#linregRobustDemoCombined.ipynb
lassoPathProstate.ipynb,https://probml.github.io/notebooks#lassoPathProstate.ipynb
fig_11_10.ipynb,https://probml.github.io/notebooks#fig_11_10.ipynb
linreg_contours_sse_plot.ipynb,https://probml.github.io/notebooks#linreg_contours_sse_plot.ipynb
splines_cherry_blossoms.ipynb,https://probml.github.io/notebooks#splines_cherry_blossoms.ipynb
linsys_solve_demo2.ipynb,https://probml.github.io/notebooks#linsys_solve_demo2.ipynb
splines_basis_heatmap.ipynb,https://probml.github.io/notebooks#splines_basis_heatmap.ipynb
linsys_solve_demo.ipynb,https://probml.github.io/notebooks#linsys_solve_demo.ipynb
LinearRegressionProbML.ipynb,https://probml.github.io/notebooks#LinearRegressionProbML.ipynb
linregOnlineDemo.ipynb,https://probml.github.io/notebooks#linregOnlineDemo.ipynb
linreg_2d_bayes_demo.ipynb,https://probml.github.io/notebooks#linreg_2d_bayes_demo.ipynb
sparse_sensing_demo.ipynb,https://probml.github.io/notebooks#sparse_sensing_demo.ipynb
prostate_comparison.ipynb,https://probml.github.io/notebooks#prostate_comparison.ipynb
multi_collinear_legs_numpyro.ipynb,https://probml.github.io/notebooks#multi_collinear_legs_numpyro.ipynb
geom_ridge.ipynb,https://probml.github.io/notebooks#geom_ridge.ipynb
svm_classifier_feature_scaling.ipynb,https://probml.github.io/notebooks#svm_classifier_feature_scaling.ipynb
kernelBinaryClassifDemo.ipynb,https://probml.github.io/notebooks#kernelBinaryClassifDemo.ipynb
svm_regression_1d.ipynb,https://probml.github.io/notebooks#svm_regression_1d.ipynb
svm_classifier_2d.ipynb,https://probml.github.io/notebooks#svm_classifier_2d.ipynb
gp_classify_spaceflu_1d_pymc3.ipynb,https://probml.github.io/notebooks#gp_classify_spaceflu_1d_pymc3.ipynb
gp_kernel_plot.ipynb,https://probml.github.io/notebooks#gp_kernel_plot.ipynb
rvm_regression_1d.ipynb,https://probml.github.io/notebooks#rvm_regression_1d.ipynb
svmCgammaDemo.ipynb,https://probml.github.io/notebooks#svmCgammaDemo.ipynb
gp_classify_iris_1d_pymc3.ipynb,https://probml.github.io/notebooks#gp_classify_iris_1d_pymc3.ipynb
poisson_regression_insurance.ipynb,https://probml.github.io/notebooks#poisson_regression_insurance.ipynb
sgd_minima_variance.ipynb,https://probml.github.io/notebooks#sgd_minima_variance.ipynb
mlp_imdb_tf.ipynb,https://probml.github.io/notebooks#mlp_imdb_tf.ipynb
activation_fun_deriv.ipynb,https://probml.github.io/notebooks#activation_fun_deriv.ipynb
linregRbfDemo.ipynb,https://probml.github.io/notebooks#linregRbfDemo.ipynb
flax_intro.ipynb,https://probml.github.io/notebooks#flax_intro.ipynb
sparse_mlp.ipynb,https://probml.github.io/notebooks#sparse_mlp.ipynb
multi_gpu_training_torch.ipynb,https://probml.github.io/notebooks#multi_gpu_training_torch.ipynb
multi_gpu_training_jax.ipynb,https://probml.github.io/notebooks#multi_gpu_training_jax.ipynb
bnn_hierarchical_numpyro.ipynb,https://probml.github.io/notebooks#bnn_hierarchical_numpyro.ipynb
bnn_hierarchical_pymc3.ipynb,https://probml.github.io/notebooks#bnn_hierarchical_pymc3.ipynb
mlp_cifar_pytorch.ipynb,https://probml.github.io/notebooks#mlp_cifar_pytorch.ipynb
mixexpDemoOneToMany.ipynb,https://probml.github.io/notebooks#mixexpDemoOneToMany.ipynb
logregXorDemo.ipynb,https://probml.github.io/notebooks#logregXorDemo.ipynb
mlp_mnist_tf.ipynb,https://probml.github.io/notebooks#mlp_mnist_tf.ipynb
mlp_1d_regression_hetero_tfp.ipynb,https://probml.github.io/notebooks#mlp_1d_regression_hetero_tfp.ipynb
xor_heaviside.ipynb,https://probml.github.io/notebooks#xor_heaviside.ipynb
spectral_clustering_demo.ipynb,https://probml.github.io/notebooks#spectral_clustering_demo.ipynb
gmm_identifiability_pymc3.ipynb,https://probml.github.io/notebooks#gmm_identifiability_pymc3.ipynb
yeast_data_viz.ipynb,https://probml.github.io/notebooks#yeast_data_viz.ipynb
gmm_chooseK_pymc3.ipynb,https://probml.github.io/notebooks#gmm_chooseK_pymc3.ipynb
hclust_yeast_demo.ipynb,https://probml.github.io/notebooks#hclust_yeast_demo.ipynb
agglomDemo.ipynb,https://probml.github.io/notebooks#agglomDemo.ipynb
vqDemo.ipynb,https://probml.github.io/notebooks#vqDemo.ipynb
fig_21_11.ipynb,https://probml.github.io/notebooks#fig_21_11.ipynb
kmeans_yeast_demo.ipynb,https://probml.github.io/notebooks#kmeans_yeast_demo.ipynb
kmeans_voronoi.ipynb,https://probml.github.io/notebooks#kmeans_voronoi.ipynb
kmeans_silhouette.ipynb,https://probml.github.io/notebooks#kmeans_silhouette.ipynb
kmeans_minibatch.ipynb,https://probml.github.io/notebooks#kmeans_minibatch.ipynb
nmt_attention_jax.ipynb,https://probml.github.io/notebooks#nmt_attention_jax.ipynb
nmt_torch.ipynb,https://probml.github.io/notebooks#nmt_torch.ipynb
entailment_attention_mlp_torch.ipynb,https://probml.github.io/notebooks#entailment_attention_mlp_torch.ipynb
bert_jax.ipynb,https://probml.github.io/notebooks#bert_jax.ipynb
transformers_jax.ipynb,https://probml.github.io/notebooks#transformers_jax.ipynb
attention_jax.ipynb,https://probml.github.io/notebooks#attention_jax.ipynb
lstm_jax.ipynb,https://probml.github.io/notebooks#lstm_jax.ipynb
entailment_attention_mlp_jax.ipynb,https://probml.github.io/notebooks#entailment_attention_mlp_jax.ipynb
transformers_torch.ipynb,https://probml.github.io/notebooks#transformers_torch.ipynb
rnn_sentiment_torch.ipynb,https://probml.github.io/notebooks#rnn_sentiment_torch.ipynb
gru_torch.ipynb,https://probml.github.io/notebooks#gru_torch.ipynb
multi_head_attention_torch.ipynb,https://probml.github.io/notebooks#multi_head_attention_torch.ipynb
rnn_sentiment_jax.ipynb,https://probml.github.io/notebooks#rnn_sentiment_jax.ipynb
nmt_jax.ipynb,https://probml.github.io/notebooks#nmt_jax.ipynb
rnn_torch.ipynb,https://probml.github.io/notebooks#rnn_torch.ipynb
positional_encoding_jax.ipynb,https://probml.github.io/notebooks#positional_encoding_jax.ipynb
gru_jax.ipynb,https://probml.github.io/notebooks#gru_jax.ipynb
positional_encoding_torch.ipynb,https://probml.github.io/notebooks#positional_encoding_torch.ipynb
bert_torch.ipynb,https://probml.github.io/notebooks#bert_torch.ipynb
cnn1d_sentiment_jax.ipynb,https://probml.github.io/notebooks#cnn1d_sentiment_jax.ipynb
multi_head_attention_jax.ipynb,https://probml.github.io/notebooks#multi_head_attention_jax.ipynb
cnn1d_sentiment_torch.ipynb,https://probml.github.io/notebooks#cnn1d_sentiment_torch.ipynb
kernel_regression_attention.ipynb,https://probml.github.io/notebooks#kernel_regression_attention.ipynb
attention_torch.ipynb,https://probml.github.io/notebooks#attention_torch.ipynb
lstm_torch.ipynb,https://probml.github.io/notebooks#lstm_torch.ipynb
nmt_attention_torch.ipynb,https://probml.github.io/notebooks#nmt_attention_torch.ipynb
rnn_jax.ipynb,https://probml.github.io/notebooks#rnn_jax.ipynb
iris_plot.ipynb,https://probml.github.io/notebooks#iris_plot.ipynb
linreg_poly_vs_degree.ipynb,https://probml.github.io/notebooks#linreg_poly_vs_degree.ipynb
linreg_2d_surface_demo.ipynb,https://probml.github.io/notebooks#linreg_2d_surface_demo.ipynb
fashion_viz_tf.ipynb,https://probml.github.io/notebooks#fashion_viz_tf.ipynb
emnist_viz_torch.ipynb,https://probml.github.io/notebooks#emnist_viz_torch.ipynb
tfidf_demo.ipynb,https://probml.github.io/notebooks#tfidf_demo.ipynb
emnist_viz_jax.ipynb,https://probml.github.io/notebooks#emnist_viz_jax.ipynb
mnist_viz_tf.ipynb,https://probml.github.io/notebooks#mnist_viz_tf.ipynb
iris_pca.ipynb,https://probml.github.io/notebooks#iris_pca.ipynb
linreg_residuals_plot.ipynb,https://probml.github.io/notebooks#linreg_residuals_plot.ipynb
iris_kmeans.ipynb,https://probml.github.io/notebooks#iris_kmeans.ipynb
fig_1_12.ipynb,https://probml.github.io/notebooks#fig_1_12.ipynb
fig_1_13.ipynb,https://probml.github.io/notebooks#fig_1_13.ipynb
iris_dtree.ipynb,https://probml.github.io/notebooks#iris_dtree.ipynb
cifar_viz_tf.ipynb,https://probml.github.io/notebooks#cifar_viz_tf.ipynb
seq_logo_demo.ipynb,https://probml.github.io/notebooks#seq_logo_demo.ipynb
MIC_correlation_2d.ipynb,https://probml.github.io/notebooks#MIC_correlation_2d.ipynb
KLfwdReverseMixGauss.ipynb,https://probml.github.io/notebooks#KLfwdReverseMixGauss.ipynb
bernoulli_entropy_fig.ipynb,https://probml.github.io/notebooks#bernoulli_entropy_fig.ipynb
resnet_jax.ipynb,https://probml.github.io/notebooks#resnet_jax.ipynb
layer_norm_jax.ipynb,https://probml.github.io/notebooks#layer_norm_jax.ipynb
conv2d_jax.ipynb,https://probml.github.io/notebooks#conv2d_jax.ipynb
cnn_mnist_tf.ipynb,https://probml.github.io/notebooks#cnn_mnist_tf.ipynb
cifar10_cnn_lightning.ipynb,https://probml.github.io/notebooks#cifar10_cnn_lightning.ipynb
densenet_jax.ipynb,https://probml.github.io/notebooks#densenet_jax.ipynb
transposed_conv_torch.ipynb,https://probml.github.io/notebooks#transposed_conv_torch.ipynb
lenet_jax.ipynb,https://probml.github.io/notebooks#lenet_jax.ipynb
lenet_torch.ipynb,https://probml.github.io/notebooks#lenet_torch.ipynb
layer_norm_torch.ipynb,https://probml.github.io/notebooks#layer_norm_torch.ipynb
batchnorm_torch.ipynb,https://probml.github.io/notebooks#batchnorm_torch.ipynb
densenet_torch.ipynb,https://probml.github.io/notebooks#densenet_torch.ipynb
resnet_torch.ipynb,https://probml.github.io/notebooks#resnet_torch.ipynb
conv2d_torch.ipynb,https://probml.github.io/notebooks#conv2d_torch.ipynb
transposed_conv_jax.ipynb,https://probml.github.io/notebooks#transposed_conv_jax.ipynb
batchnorm_jax.ipynb,https://probml.github.io/notebooks#batchnorm_jax.ipynb
cnn_cifar_pytorch.ipynb,https://probml.github.io/notebooks#cnn_cifar_pytorch.ipynb
vae_mnist_conv_lightning.ipynb,https://probml.github.io/notebooks#vae_mnist_conv_lightning.ipynb
fig_20_38.ipynb,https://probml.github.io/notebooks#fig_20_38.ipynb
fig_20_30.ipynb,https://probml.github.io/notebooks#fig_20_30.ipynb
pca.ipynb,https://probml.github.io/notebooks#pca.ipynb
fig_20_36.ipynb,https://probml.github.io/notebooks#fig_20_36.ipynb
pcaImageDemo.ipynb,https://probml.github.io/notebooks#pcaImageDemo.ipynb
fig_20_31.ipynb,https://probml.github.io/notebooks#fig_20_31.ipynb
fig_20_25.ipynb,https://probml.github.io/notebooks#fig_20_25.ipynb
pca_projected_variance.ipynb,https://probml.github.io/notebooks#pca_projected_variance.ipynb
kpcaScholkopf.ipynb,https://probml.github.io/notebooks#kpcaScholkopf.ipynb
pcaDemo2d.ipynb,https://probml.github.io/notebooks#pcaDemo2d.ipynb
fig_20_26.ipynb,https://probml.github.io/notebooks#fig_20_26.ipynb
vae_celeba_tf.ipynb,https://probml.github.io/notebooks#vae_celeba_tf.ipynb
binary_fa_demo.ipynb,https://probml.github.io/notebooks#binary_fa_demo.ipynb
pcaEmStepByStep.ipynb,https://probml.github.io/notebooks#pcaEmStepByStep.ipynb
fig_20_33.ipynb,https://probml.github.io/notebooks#fig_20_33.ipynb
fig_20_24.ipynb,https://probml.github.io/notebooks#fig_20_24.ipynb
ae_mnist_conv.ipynb,https://probml.github.io/notebooks#ae_mnist_conv.ipynb
ae_mnist_gdl_tf.ipynb,https://probml.github.io/notebooks#ae_mnist_gdl_tf.ipynb
skipgram_jax.ipynb,https://probml.github.io/notebooks#skipgram_jax.ipynb
word_analogies_jax.ipynb,https://probml.github.io/notebooks#word_analogies_jax.ipynb
ae_mnist_tf.ipynb,https://probml.github.io/notebooks#ae_mnist_tf.ipynb
fig_20_41.ipynb,https://probml.github.io/notebooks#fig_20_41.ipynb
manifold_digits_sklearn.ipynb,https://probml.github.io/notebooks#manifold_digits_sklearn.ipynb
vae_mnist_gdl_tf.ipynb,https://probml.github.io/notebooks#vae_mnist_gdl_tf.ipynb
mixPpcaDemo.ipynb,https://probml.github.io/notebooks#mixPpcaDemo.ipynb
skipgram_torch.ipynb,https://probml.github.io/notebooks#skipgram_torch.ipynb
word_analogies_torch.ipynb,https://probml.github.io/notebooks#word_analogies_torch.ipynb
pcaOverfitDemo.ipynb,https://probml.github.io/notebooks#pcaOverfitDemo.ipynb
pcaStandardization.ipynb,https://probml.github.io/notebooks#pcaStandardization.ipynb
manifold_swiss_sklearn.ipynb,https://probml.github.io/notebooks#manifold_swiss_sklearn.ipynb
fig_20_37.ipynb,https://probml.github.io/notebooks#fig_20_37.ipynb
pca_digits.ipynb,https://probml.github.io/notebooks#pca_digits.ipynb
gnn_graph_classification_jraph.ipynb,https://probml.github.io/notebooks#gnn_graph_classification_jraph.ipynb
gnn_node_classification_jraph.ipynb,https://probml.github.io/notebooks#gnn_node_classification_jraph.ipynb
iris_logreg.ipynb,https://probml.github.io/notebooks#iris_logreg.ipynb
anscombes_quartet.ipynb,https://probml.github.io/notebooks#anscombes_quartet.ipynb
datasaurus_dozen.ipynb,https://probml.github.io/notebooks#datasaurus_dozen.ipynb
gauss_plot.ipynb,https://probml.github.io/notebooks#gauss_plot.ipynb
robust_pdf_plot.ipynb,https://probml.github.io/notebooks#robust_pdf_plot.ipynb
change_of_vars_demo1d.ipynb,https://probml.github.io/notebooks#change_of_vars_demo1d.ipynb
centralLimitDemo.ipynb,https://probml.github.io/notebooks#centralLimitDemo.ipynb
activation_fun_plot.ipynb,https://probml.github.io/notebooks#activation_fun_plot.ipynb
softmax_plot.ipynb,https://probml.github.io/notebooks#softmax_plot.ipynb
fig_2_2.ipynb,https://probml.github.io/notebooks#fig_2_2.ipynb
fig_2_17.ipynb,https://probml.github.io/notebooks#fig_2_17.ipynb
prob.ipynb,https://probml.github.io/notebooks#prob.ipynb
gamma_dist_plot.ipynb,https://probml.github.io/notebooks#gamma_dist_plot.ipynb
linreg_1d_hetero_tfp.ipynb,https://probml.github.io/notebooks#linreg_1d_hetero_tfp.ipynb
student_laplace_pdf_plot.ipynb,https://probml.github.io/notebooks#student_laplace_pdf_plot.ipynb
beta_dist_plot.ipynb,https://probml.github.io/notebooks#beta_dist_plot.ipynb
discrete_prob_dist_plot.ipynb,https://probml.github.io/notebooks#discrete_prob_dist_plot.ipynb
binom_dist_plot.ipynb,https://probml.github.io/notebooks#binom_dist_plot.ipynb
bimodal_dist_plot.ipynb,https://probml.github.io/notebooks#bimodal_dist_plot.ipynb
quantile_plot.ipynb,https://probml.github.io/notebooks#quantile_plot.ipynb
logreg_poly_demo.ipynb,https://probml.github.io/notebooks#logreg_poly_demo.ipynb
logreg_laplace_demo.ipynb,https://probml.github.io/notebooks#logreg_laplace_demo.ipynb
logreg_jax.ipynb,https://probml.github.io/notebooks#logreg_jax.ipynb
perceptron_demo_2d.ipynb,https://probml.github.io/notebooks#perceptron_demo_2d.ipynb
logreg_iris_bayes_robust_1d_pymc3.ipynb,https://probml.github.io/notebooks#logreg_iris_bayes_robust_1d_pymc3.ipynb
sigmoid_2d_plot.ipynb,https://probml.github.io/notebooks#sigmoid_2d_plot.ipynb
logreg_pytorch.ipynb,https://probml.github.io/notebooks#logreg_pytorch.ipynb
iris_logreg_loss_surface.ipynb,https://probml.github.io/notebooks#iris_logreg_loss_surface.ipynb
logreg_sklearn.ipynb,https://probml.github.io/notebooks#logreg_sklearn.ipynb
logreg_multiclass_demo.ipynb,https://probml.github.io/notebooks#logreg_multiclass_demo.ipynb
neymanPearson2.ipynb,https://probml.github.io/notebooks#neymanPearson2.ipynb
dtheory.ipynb,https://probml.github.io/notebooks#dtheory.ipynb
riskFnGauss.ipynb,https://probml.github.io/notebooks#riskFnGauss.ipynb
linreg_eb_modelsel_vs_n.ipynb,https://probml.github.io/notebooks#linreg_eb_modelsel_vs_n.ipynb
fig_5_2.ipynb,https://probml.github.io/notebooks#fig_5_2.ipynb
roc_plot.ipynb,https://probml.github.io/notebooks#roc_plot.ipynb
fig_5_10.ipynb,https://probml.github.io/notebooks#fig_5_10.ipynb
coins_model_sel_demo.ipynb,https://probml.github.io/notebooks#coins_model_sel_demo.ipynb
huberLossPlot.ipynb,https://probml.github.io/notebooks#huberLossPlot.ipynb
pr_plot.ipynb,https://probml.github.io/notebooks#pr_plot.ipynb
twoPowerCurves.ipynb,https://probml.github.io/notebooks#twoPowerCurves.ipynb
cholesky_demo.ipynb,https://probml.github.io/notebooks#cholesky_demo.ipynb
gaussEvec.ipynb,https://probml.github.io/notebooks#gaussEvec.ipynb
einsum_demo.ipynb,https://probml.github.io/notebooks#einsum_demo.ipynb
height_weight_whiten_plot.ipynb,https://probml.github.io/notebooks#height_weight_whiten_plot.ipynb
linalg.ipynb,https://probml.github.io/notebooks#linalg.ipynb
power_method_demo.ipynb,https://probml.github.io/notebooks#power_method_demo.ipynb
svd_image_demo.ipynb,https://probml.github.io/notebooks#svd_image_demo.ipynb
smooth-vs-nonsmooth-1d.ipynb,https://probml.github.io/notebooks#smooth-vs-nonsmooth-1d.ipynb
sgd_comparison.ipynb,https://probml.github.io/notebooks#sgd_comparison.ipynb
mix_gauss_singularity.ipynb,https://probml.github.io/notebooks#mix_gauss_singularity.ipynb
fig_8_26.ipynb,https://probml.github.io/notebooks#fig_8_26.ipynb
opt_jax.ipynb,https://probml.github.io/notebooks#opt_jax.ipynb
fig_8_14.ipynb,https://probml.github.io/notebooks#fig_8_14.ipynb
autodiff_jax.ipynb,https://probml.github.io/notebooks#autodiff_jax.ipynb
lms_demo.ipynb,https://probml.github.io/notebooks#lms_demo.ipynb
mix_gauss_mle_vs_map.ipynb,https://probml.github.io/notebooks#mix_gauss_mle_vs_map.ipynb
autodiff_pytorch.ipynb,https://probml.github.io/notebooks#autodiff_pytorch.ipynb
opt_flax.ipynb,https://probml.github.io/notebooks#opt_flax.ipynb
learning_rate_plot.ipynb,https://probml.github.io/notebooks#learning_rate_plot.ipynb
saddle.ipynb,https://probml.github.io/notebooks#saddle.ipynb
gmm_lik_surface_plot.ipynb,https://probml.github.io/notebooks#gmm_lik_surface_plot.ipynb
autodiff_tf.ipynb,https://probml.github.io/notebooks#autodiff_tf.ipynb
newtonsMethodNonConvex.ipynb,https://probml.github.io/notebooks#newtonsMethodNonConvex.ipynb
extrema_fig_1d.ipynb,https://probml.github.io/notebooks#extrema_fig_1d.ipynb
mix_gauss_demo_faithful.ipynb,https://probml.github.io/notebooks#mix_gauss_demo_faithful.ipynb
lineSearchConditionNum.ipynb,https://probml.github.io/notebooks#lineSearchConditionNum.ipynb
fig_8_1.ipynb,https://probml.github.io/notebooks#fig_8_1.ipynb
lrschedule_tf.ipynb,https://probml.github.io/notebooks#lrschedule_tf.ipynb
steepestDescentDemo.ipynb,https://probml.github.io/notebooks#steepestDescentDemo.ipynb
newtonsMethodMinQuad.ipynb,https://probml.github.io/notebooks#newtonsMethodMinQuad.ipynb
em_log_likelihood_max.ipynb,https://probml.github.io/notebooks#em_log_likelihood_max.ipynb
matrix_factorization_recommender_surprise_lib.ipynb,https://probml.github.io/notebooks#matrix_factorization_recommender_surprise_lib.ipynb
matrix_factorization_recommender.ipynb,https://probml.github.io/notebooks#matrix_factorization_recommender.ipynb
linreg_sklearn.ipynb,https://probml.github.io/notebooks#linreg_sklearn.ipynb
poly_regression_torch.ipynb,https://probml.github.io/notebooks#poly_regression_torch.ipynb
linreg_pymc3.ipynb,https://probml.github.io/notebooks#linreg_pymc3.ipynb
svi_linear_regression_1d_tfp.ipynb,https://probml.github.io/notebooks#svi_linear_regression_1d_tfp.ipynb
lecun1989_with_commentary.ipynb,https://probml.github.io/notebooks#lecun1989_with_commentary.ipynb