Kernel: Python [conda env:pymc_exp]
Firestore DB configuration
In [1]:
In [2]:
Mapping of Figures url
In [3]:
Out[3]:
Mapping of 219 urls is saved in figures_url_mapping_book1.csv
{'1.3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_plot.ipynb',
'1.4': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_dtree.ipynb',
'1.5': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/linreg_residuals_plot.ipynb',
'1.6': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/linreg_2d_surface_demo.ipynb',
'1.7': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/linreg_poly_vs_degree.ipynb',
'1.8': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_kmeans.ipynb',
'1.9': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_pca.ipynb',
'1.12': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/fig_1_12.ipynb',
'1.13': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/fig_1_13.ipynb',
'2.1': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/discrete_prob_dist_plot.ipynb',
'2.2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/fig_2_2.ipynb',
'2.4': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/bimodal_dist_plot.ipynb',
'2.5': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/anscombes_quartet.ipynb',
'2.6': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/datasaurus_dozen.ipynb',
'2.9': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/binom_dist_plot.ipynb',
'2.10': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/activation_fun_plot.ipynb',
'2.11': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/iris_logreg.ipynb',
'2.12': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/softmax_plot.ipynb',
'2.13': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/iris_logreg.ipynb',
'2.14': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/linreg_1d_hetero_tfp.ipynb',
'2.15': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/student_laplace_pdf_plot.ipynb',
'2.16': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/robust_pdf_plot.ipynb',
'2.17': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/fig_2_17.ipynb',
'2.23': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/centralLimitDemo.ipynb',
'2.24': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/change_of_vars_demo1d.ipynb',
'3.3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/simpsons_paradox.ipynb',
'3.5': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_plot_2d.ipynb',
'3.6': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_plot_2d.ipynb',
'3.7': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_imputation_known_params_demo.ipynb',
'3.8': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_infer_1d.ipynb',
'3.9': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_infer_2d.ipynb',
'3.10': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/sensor_fusion_2d.ipynb',
'3.11': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gmm_plot_demo.ipynb',
'3.12': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gmm_2d.ipynb',
'3.13': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/mix_bernoulli_em_mnist.ipynb',
'4.1': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/iris_cov_mat.ipynb',
'4.2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/hinge_loss_plot.ipynb',
'4.3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/ema_demo.ipynb',
'4.4': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/shrinkcov_plots.ipynb',
'4.5': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/linreg_poly_ridge.ipynb',
'4.7': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/polyfitRidgeCV.ipynb',
'4.8': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/imdb_mlp_bow_tf.ipynb',
'4.9': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/linreg_poly_vs_n.ipynb',
'4.10': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/beta_binom_post_plot.ipynb',
'4.12': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/beta_binom_post_pred_plot.ipynb',
'4.13': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/mixbetademo.ipynb',
'4.14': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/fig_4_14.ipynb',
'4.15': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/dirichlet_samples_plot.ipynb',
'4.16': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/gauss_infer_1d.ipynb',
'4.17': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/gauss_infer_2d.ipynb',
'4.18': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/betaHPD.ipynb',
'4.19': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/postDensityIntervals.ipynb',
'4.20': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/fig_4_20.ipynb',
'4.22': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/laplace_approx_beta_binom_jax.ipynb',
'4.23': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/bootstrapDemoBer.ipynb',
'4.24': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/samplingDistributionGaussianShrinkage.ipynb',
'4.25': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/biasVarModelComplexity3.ipynb',
'5.2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/fig_5_2.ipynb',
'5.3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/huberLossPlot.ipynb',
'5.4': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/coins_model_sel_demo.ipynb',
'5.5': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/linreg_eb_modelsel_vs_n.ipynb',
'5.6': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/linreg_eb_modelsel_vs_n.ipynb',
'5.8': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/riskFnGauss.ipynb',
'5.10': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/fig_5_10.ipynb',
'6.1': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/bernoulli_entropy_fig.ipynb',
'6.2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/seq_logo_demo.ipynb',
'6.3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/KLfwdReverseMixGauss.ipynb',
'6.6': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/MIC_correlation_2d.ipynb',
'7.6': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/gaussEvec.ipynb',
'7.7': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/height_weight_whiten_plot.ipynb',
'7.9': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/svd_image_demo.ipynb',
'7.10': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/svd_image_demo.ipynb',
'8.1': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/fig_8_1.ipynb',
'8.7': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/smooth-vs-nonsmooth-1d.ipynb',
'8.11': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/steepestDescentDemo.ipynb',
'8.12': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/lineSearchConditionNum.ipynb',
'8.14': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/fig_8_14.ipynb',
'8.16': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/lms_demo.ipynb',
'8.17': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/lrschedule_tf.ipynb',
'8.18': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/learning_rate_plot.ipynb',
'8.23': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/emLogLikelihoodMax.ipynb',
'8.25': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/mix_gauss_demo_faithful.ipynb',
'8.26': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/fig_8_26.ipynb',
'8.27': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/gmm_lik_surface_plot.ipynb',
'9.1': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/discrim_analysis_dboundaries_plot2.ipynb',
'9.2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/discrim_analysis_dboundaries_plot2.ipynb',
'9.4': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/fisher_lda_demo.ipynb',
'9.5': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/fisher_discrim_vowel.ipynb',
'9.6': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/naive_bayes_mnist_jax.ipynb',
'9.7': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/naive_bayes_mnist_jax.ipynb',
'9.8': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/generativeVsDiscrim.ipynb',
'10.1': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/iris_logreg.ipynb',
'10.2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/sigmoid_2d_plot.ipynb',
'10.4': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_poly_demo.ipynb',
'10.5': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/iris_logreg_loss_surface.ipynb',
'10.6': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_poly_demo.ipynb',
'10.7': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_multiclass_demo.ipynb',
'10.10': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_iris_bayes_robust_1d_pymc3.ipynb',
'10.13': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_laplace_demo.ipynb',
'10.14': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_laplace_demo.ipynb',
'11.1': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_poly_vs_degree.ipynb',
'11.2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_contours_sse_plot.ipynb',
'11.4': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linregOnlineDemo.ipynb',
'11.5': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_poly_vs_degree.ipynb',
'11.6': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_poly_vs_degree.ipynb',
'11.7': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/geom_ridge.ipynb',
'11.10': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/fig_11_10.ipynb',
'11.11': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/prostate_comparison.ipynb',
'11.12': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/prostate_comparison.ipynb',
'11.13': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/sparse_sensing_demo.ipynb',
'11.14': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/groupLassoDemo.ipynb',
'11.15': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/groupLassoDemo.ipynb',
'11.16': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/splines_basis_weighted.ipynb',
'11.17': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/splines_basis_heatmap.ipynb',
'11.18': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/splines_cherry_blossoms.ipynb',
'11.19': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/fig_11_19.ipynb',
'11.20': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_2d_bayes_demo.ipynb',
'11.21': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_post_pred_plot.ipynb',
'11.22': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_2d_bayes_centering_pymc3.ipynb',
'11.23': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/multi_collinear_legs_numpyro.ipynb',
'11.24': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/multi_collinear_legs_numpyro.ipynb',
'12.1': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/12/poisson_regression_insurance.ipynb',
'12.2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/12/poisson_regression_insurance.ipynb',
'13.1': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/xor_heaviside.ipynb',
'13.2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/activation_fun_plot.ipynb',
'13.4': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/mlp_mnist_tf.ipynb',
'13.6': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/mlp_1d_regression_hetero_tfp.ipynb',
'13.14': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/activation_fun_deriv_jax.ipynb',
'13.17': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/sparse_mlp.ipynb',
'13.20': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/sgd_minima_variance.ipynb',
'13.21': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/logregXorDemo.ipynb',
'13.22': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/linregRbfDemo.ipynb',
'13.23': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/mixexpDemoOneToMany.ipynb',
'14.5': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/conv2d_jax.ipynb',
'14.9': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/conv2d_jax.ipynb',
'14.17': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/cnn_mnist_tf.ipynb',
'15.2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/rnn_jax.ipynb',
'15.17': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/kernel_regression_attention.ipynb',
'15.25': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/positional_encoding_jax.ipynb',
'16.1': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/knn_voronoi_plot.ipynb',
'16.2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/knn_classify_demo.ipynb',
'16.3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/curse_dimensionality_plot.ipynb',
'16.8': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/smoothingKernelPlot.ipynb',
'16.9': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/parzen_window_demo2.ipynb',
'16.10': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/kernelRegressionDemo.ipynb',
'17.1': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gprDemoArd.ipynb',
'17.2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gpKernelPlot.ipynb',
'17.3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gpKernelPlot.ipynb',
'17.7': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gprDemoNoiseFree.ipynb',
'17.8': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gprDemoChangeHparams.ipynb',
'17.9': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gpr_demo_marglik.ipynb',
'17.10': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gp_classify_iris_1d_pymc3.ipynb',
'17.11': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gp_classify_spaceflu_1d_pymc3.ipynb',
'17.14': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svm_classifier_feature_scaling.ipynb',
'17.17': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svm_classifier_2d.ipynb',
'17.18': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svmCgammaDemo.ipynb',
'17.19': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/huberLossPlot.ipynb',
'17.20': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svm_regression_1d.ipynb',
'17.21': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/kernelBinaryClassifDemo.ipynb',
'17.22': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/rvm_regression_1d.ipynb',
'17.23': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/rvm_regression_1d.ipynb',
'18.1': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/regtreeSurfaceDemo.ipynb',
'18.3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/dtree_sensitivity.ipynb',
'18.4': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/fig_18_4.ipynb',
'18.5': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/spam_tree_ensemble_compare.ipynb',
'18.6': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/boosted_regr_trees.ipynb',
'18.7': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/hinge_loss_plot.ipynb',
'18.8': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/rf_feature_importance_mnist.ipynb',
'18.9': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/spam_tree_ensemble_interpret.ipynb',
'18.10': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/spam_tree_ensemble_interpret.ipynb',
'19.1': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/19/image_augmentation_jax.ipynb',
'19.14': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/19/hbayes_maml.ipynb',
'20.1': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaDemo2d.ipynb',
'20.2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pca_digits.ipynb',
'20.3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaImageDemo.ipynb',
'20.4': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pca_projected_variance.ipynb',
'20.5': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaStandardization.ipynb',
'20.6': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaOverfitDemo.ipynb',
'20.7': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaOverfitDemo.ipynb',
'20.8': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaOverfitDemo.ipynb',
'20.10': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaEmStepByStep.ipynb',
'20.12': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/mixPpcaDemo.ipynb',
'20.13': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/binary_fa_demo.ipynb',
'20.17': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_tf.ipynb',
'20.18': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_tf.ipynb',
'20.19': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_tf.ipynb',
'20.21': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_tf.ipynb',
'20.24': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_24.ipynb',
'20.25': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_25.ipynb',
'20.26': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_26.ipynb',
'20.27': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/vae_mnist_conv_lightning.ipynb',
'20.30': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_30.ipynb',
'20.31': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_31.ipynb',
'20.33': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_33.ipynb',
'20.34': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_swiss_sklearn.ipynb',
'20.35': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/kpcaScholkopf.ipynb',
'20.36': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_36.ipynb',
'20.37': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_37.ipynb',
'20.38': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_38.ipynb',
'20.41': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_41.ipynb',
'21.2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/agglomDemo.ipynb',
'21.4': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/hclust_yeast_demo.ipynb',
'21.5': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/yeast_data_viz.ipynb',
'21.6': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/hclust_yeast_demo.ipynb',
'21.7': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_voronoi.ipynb',
'21.8': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_yeast_demo.ipynb',
'21.9': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/vqDemo.ipynb',
'21.10': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_minibatch.ipynb',
'21.11': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/fig_21_11.ipynb',
'21.12': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_silhouette.ipynb',
'21.13': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_silhouette.ipynb',
'21.14': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_2d.ipynb',
'21.15': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_identifiability_pymc3.ipynb',
'21.16': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_identifiability_pymc3.ipynb',
'21.17': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_chooseK_pymc3.ipynb',
'21.18': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_chooseK_pymc3.ipynb',
'21.19': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/spectral_clustering_demo.ipynb',
'22.3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/22/matrix_factorization_recommender.ipynb',
'22.4': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/22/matrix_factorization_recommender.ipynb'}
In [4]:
Mapping of Non-figures url
In [3]:
Out[3]:
['../notebooks/book1/18/bagging_trees.ipynb',
'../notebooks/book1/18/regtreeSurfaceDemo.ipynb',
'../notebooks/book1/18/spam_tree_ensemble_interpret.ipynb',
'../notebooks/book1/18/hinge_loss_plot.ipynb',
'../notebooks/book1/18/boosted_regr_trees.ipynb',
'../notebooks/book1/18/rf_demo_2d.ipynb',
'../notebooks/book1/18/dtree_sensitivity.ipynb',
'../notebooks/book1/18/spam_tree_ensemble_compare.ipynb',
'../notebooks/book1/18/rf_feature_importance_mnist.ipynb',
'../notebooks/book1/18/fig_18_4.ipynb',
'../notebooks/book1/09/naive_bayes_mnist_torch.ipynb',
'../notebooks/book1/09/discrim_analysis_dboundaries_plot2.ipynb',
'../notebooks/book1/09/fisher_lda_demo.ipynb',
'../notebooks/book1/09/fisher_discrim_vowel.ipynb',
'../notebooks/book1/09/generativeVsDiscrim.ipynb',
'../notebooks/book1/09/naive_bayes_mnist_jax.ipynb',
'../notebooks/book1/03/simpsons_paradox.ipynb',
'../notebooks/book1/03/sprinkler_pgm.ipynb',
'../notebooks/book1/03/gauss_infer_2d.ipynb',
'../notebooks/book1/03/mix_bernoulli_em_mnist.ipynb',
'../notebooks/book1/03/mix_bernoulli_sgd_mnist.ipynb',
'../notebooks/book1/03/sensor_fusion_2d.ipynb',
'../notebooks/book1/03/gauss_plot_2d.ipynb',
'../notebooks/book1/03/gauss_imputation_known_params_demo.ipynb',
'../notebooks/book1/03/gmm_2d.ipynb',
'../notebooks/book1/03/correlation2d.ipynb',
'../notebooks/book1/03/gauss_infer_1d.ipynb',
'../notebooks/book1/03/gmm_plot_demo.ipynb',
'../notebooks/book1/19/finetune_cnn_jax.ipynb',
'../notebooks/book1/19/finetune_cnn_torch.ipynb',
'../notebooks/book1/19/image_augmentation_torch.ipynb',
'../notebooks/book1/19/image_augmentation_jax.ipynb',
'../notebooks/book1/19/hbayes_maml.ipynb',
'../notebooks/book1/04/fig_4_14.ipynb',
'../notebooks/book1/04/biasVarModelComplexity3.ipynb',
'../notebooks/book1/04/beta_binom_post_pred_plot.ipynb',
'../notebooks/book1/04/mixbetademo.ipynb',
'../notebooks/book1/04/polyfitRidgeCV.ipynb',
'../notebooks/book1/04/beta_binom_approx_post_pymc3.ipynb',
'../notebooks/book1/04/iris_cov_mat.ipynb',
'../notebooks/book1/04/gauss_infer_2d.ipynb',
'../notebooks/book1/04/samplingDistributionGaussianShrinkage.ipynb',
'../notebooks/book1/04/laplace_approx_beta_binom_jax.ipynb',
'../notebooks/book1/04/dirichlet_3d_triangle_plot.ipynb',
'../notebooks/book1/04/shrinkcov_plots.ipynb',
'../notebooks/book1/04/hinge_loss_plot.ipynb',
'../notebooks/book1/04/beta_credible_int_demo.ipynb',
'../notebooks/book1/04/imdb_mlp_bow_tf.ipynb',
'../notebooks/book1/04/dirichlet_samples_plot.ipynb',
'../notebooks/book1/04/linreg_poly_vs_n.ipynb',
'../notebooks/book1/04/linreg_poly_ridge.ipynb',
'../notebooks/book1/04/betaHPD.ipynb',
'../notebooks/book1/04/bootstrapDemoBer.ipynb',
'../notebooks/book1/04/logreg_iris_1d.ipynb',
'../notebooks/book1/04/dirichlet_3d_spiky_plot.ipynb',
'../notebooks/book1/04/beta_binom_post_plot.ipynb',
'../notebooks/book1/04/postDensityIntervals.ipynb',
'../notebooks/book1/04/ema_demo.ipynb',
'../notebooks/book1/04/gauss_infer_1d.ipynb',
'../notebooks/book1/04/logreg_iris_bayes_1d_pymc3.ipynb',
'../notebooks/book1/04/fig_4_20.ipynb',
'../notebooks/book1/16/kernelRegressionDemo.ipynb',
'../notebooks/book1/16/parzen_window_demo2.ipynb',
'../notebooks/book1/16/curse_dimensionality_plot.ipynb',
'../notebooks/book1/16/smoothingKernelPlot.ipynb',
'../notebooks/book1/16/knn_voronoi_plot.ipynb',
'../notebooks/book1/16/knn_classify_demo.ipynb',
'../notebooks/book1/11/fig_11_19.ipynb',
'../notebooks/book1/11/splines_basis_weighted.ipynb',
'../notebooks/book1/11/linreg_2d_bayes_centering_pymc3.ipynb',
'../notebooks/book1/11/groupLassoDemo.ipynb',
'../notebooks/book1/11/linreg_poly_vs_degree.ipynb',
'../notebooks/book1/11/linreg_post_pred_plot.ipynb',
'../notebooks/book1/11/ridgePathProstate.ipynb',
'../notebooks/book1/11/linregRobustDemoCombined.ipynb',
'../notebooks/book1/11/lassoPathProstate.ipynb',
'../notebooks/book1/11/fig_11_10.ipynb',
'../notebooks/book1/11/linreg_contours_sse_plot.ipynb',
'../notebooks/book1/11/splines_cherry_blossoms.ipynb',
'../notebooks/book1/11/splines_basis_heatmap.ipynb',
'../notebooks/book1/11/linsys_solve_demo.ipynb',
'../notebooks/book1/11/linregOnlineDemo.ipynb',
'../notebooks/book1/11/linreg_2d_bayes_demo.ipynb',
'../notebooks/book1/11/sparse_sensing_demo.ipynb',
'../notebooks/book1/11/huberLossPlot.ipynb',
'../notebooks/book1/11/prostate_comparison.ipynb',
'../notebooks/book1/11/multi_collinear_legs_numpyro.ipynb',
'../notebooks/book1/11/geom_ridge.ipynb',
'../notebooks/book1/17/svm_classifier_feature_scaling.ipynb',
'../notebooks/book1/17/kernelBinaryClassifDemo.ipynb',
'../notebooks/book1/17/svm_regression_1d.ipynb',
'../notebooks/book1/17/svm_classifier_2d.ipynb',
'../notebooks/book1/17/gp_classify_spaceflu_1d_pymc3.ipynb',
'../notebooks/book1/17/gprDemoNoiseFree.ipynb',
'../notebooks/book1/17/gprDemoArd.ipynb',
'../notebooks/book1/17/rvm_regression_1d.ipynb',
'../notebooks/book1/17/svmCgammaDemo.ipynb',
'../notebooks/book1/17/gpKernelPlot.ipynb',
'../notebooks/book1/17/gprDemoChangeHparams.ipynb',
'../notebooks/book1/17/gpr_demo_marglik.ipynb',
'../notebooks/book1/17/huberLossPlot.ipynb',
'../notebooks/book1/17/gp_classify_iris_1d_pymc3.ipynb',
'../notebooks/book1/12/poisson_regression_insurance.ipynb',
'../notebooks/book1/13/sgd_minima_variance.ipynb',
'../notebooks/book1/13/mlp_imdb_tf.ipynb',
'../notebooks/book1/13/activation_fun_deriv_jax.ipynb',
'../notebooks/book1/13/linregRbfDemo.ipynb',
'../notebooks/book1/13/activation_fun_plot.ipynb',
'../notebooks/book1/13/sparse_mlp.ipynb',
'../notebooks/book1/13/multi_gpu_training_torch.ipynb',
'../notebooks/book1/13/multi_gpu_training_jax.ipynb',
'../notebooks/book1/13/mixexpDemoOneToMany.ipynb',
'../notebooks/book1/13/logregXorDemo.ipynb',
'../notebooks/book1/13/mlp_mnist_tf.ipynb',
'../notebooks/book1/13/mlp_1d_regression_hetero_tfp.ipynb',
'../notebooks/book1/13/xor_heaviside.ipynb',
'../notebooks/book1/21/spectral_clustering_demo.ipynb',
'../notebooks/book1/21/gmm_identifiability_pymc3.ipynb',
'../notebooks/book1/21/yeast_data_viz.ipynb',
'../notebooks/book1/21/gmm_chooseK_pymc3.ipynb',
'../notebooks/book1/21/hclust_yeast_demo.ipynb',
'../notebooks/book1/21/agglomDemo.ipynb',
'../notebooks/book1/21/vqDemo.ipynb',
'../notebooks/book1/21/fig_21_11.ipynb',
'../notebooks/book1/21/kmeans_yeast_demo.ipynb',
'../notebooks/book1/21/kmeans_voronoi.ipynb',
'../notebooks/book1/21/kmeans_silhouette.ipynb',
'../notebooks/book1/21/kmeans_minibatch.ipynb',
'../notebooks/book1/21/gmm_2d.ipynb',
'../notebooks/book1/15/nmt_attention_jax.ipynb',
'../notebooks/book1/15/nmt_torch.ipynb',
'../notebooks/book1/15/entailment_attention_mlp_torch.ipynb',
'../notebooks/book1/15/bert_jax.ipynb',
'../notebooks/book1/15/transformers_jax.ipynb',
'../notebooks/book1/15/attention_jax.ipynb',
'../notebooks/book1/15/lstm_jax.ipynb',
'../notebooks/book1/15/entailment_attention_mlp_jax.ipynb',
'../notebooks/book1/15/transformers_torch.ipynb',
'../notebooks/book1/15/rnn_sentiment_torch.ipynb',
'../notebooks/book1/15/gru_torch.ipynb',
'../notebooks/book1/15/multi_head_attention_torch.ipynb',
'../notebooks/book1/15/rnn_sentiment_jax.ipynb',
'../notebooks/book1/15/nmt_jax.ipynb',
'../notebooks/book1/15/rnn_torch.ipynb',
'../notebooks/book1/15/positional_encoding_jax.ipynb',
'../notebooks/book1/15/gru_jax.ipynb',
'../notebooks/book1/15/positional_encoding_torch.ipynb',
'../notebooks/book1/15/bert_torch.ipynb',
'../notebooks/book1/15/cnn1d_sentiment_jax.ipynb',
'../notebooks/book1/15/multi_head_attention_jax.ipynb',
'../notebooks/book1/15/cnn1d_sentiment_torch.ipynb',
'../notebooks/book1/15/kernel_regression_attention.ipynb',
'../notebooks/book1/15/attention_torch.ipynb',
'../notebooks/book1/15/lstm_torch.ipynb',
'../notebooks/book1/15/nmt_attention_torch.ipynb',
'../notebooks/book1/15/rnn_jax.ipynb',
'../notebooks/book1/01/iris_plot.ipynb',
'../notebooks/book1/01/linreg_poly_vs_degree.ipynb',
'../notebooks/book1/01/linreg_2d_surface_demo.ipynb',
'../notebooks/book1/01/text_preproc_jax.ipynb',
'../notebooks/book1/01/fashion_viz_tf.ipynb',
'../notebooks/book1/01/emnist_viz_torch.ipynb',
'../notebooks/book1/01/tfidf_demo.ipynb',
'../notebooks/book1/01/emnist_viz_jax.ipynb',
'../notebooks/book1/01/mnist_viz_tf.ipynb',
'../notebooks/book1/01/iris_pca.ipynb',
'../notebooks/book1/01/linreg_residuals_plot.ipynb',
'../notebooks/book1/01/text_preproc_torch.ipynb',
'../notebooks/book1/01/iris_kmeans.ipynb',
'../notebooks/book1/01/fig_1_12.ipynb',
'../notebooks/book1/01/fig_1_13.ipynb',
'../notebooks/book1/01/iris_dtree.ipynb',
'../notebooks/book1/01/cifar_viz_tf.ipynb',
'../notebooks/book1/06/seq_logo_demo.ipynb',
'../notebooks/book1/06/MIC_correlation_2d.ipynb',
'../notebooks/book1/06/KLfwdReverseMixGauss.ipynb',
'../notebooks/book1/06/bernoulli_entropy_fig.ipynb',
'../notebooks/book1/14/resnet_jax.ipynb',
'../notebooks/book1/14/layer_norm_jax.ipynb',
'../notebooks/book1/14/conv2d_jax.ipynb',
'../notebooks/book1/14/cnn_mnist_tf.ipynb',
'../notebooks/book1/14/cifar10_cnn_lightning.ipynb',
'../notebooks/book1/14/densenet_jax.ipynb',
'../notebooks/book1/14/transposed_conv_torch.ipynb',
'../notebooks/book1/14/lenet_jax.ipynb',
'../notebooks/book1/14/lenet_torch.ipynb',
'../notebooks/book1/14/layer_norm_torch.ipynb',
'../notebooks/book1/14/batchnorm_torch.ipynb',
'../notebooks/book1/14/densenet_torch.ipynb',
'../notebooks/book1/14/resnet_torch.ipynb',
'../notebooks/book1/14/conv2d_torch.ipynb',
'../notebooks/book1/14/transposed_conv_jax.ipynb',
'../notebooks/book1/14/batchnorm_jax.ipynb',
'../notebooks/book1/20/vae_mnist_conv_lightning.ipynb',
'../notebooks/book1/20/fig_20_38.ipynb',
'../notebooks/book1/20/fig_20_30.ipynb',
'../notebooks/book1/20/fig_20_36.ipynb',
'../notebooks/book1/20/pcaImageDemo.ipynb',
'../notebooks/book1/20/fig_20_31.ipynb',
'../notebooks/book1/20/fig_20_25.ipynb',
'../notebooks/book1/20/pca_projected_variance.ipynb',
'../notebooks/book1/20/kpcaScholkopf.ipynb',
'../notebooks/book1/20/pcaDemo2d.ipynb',
'../notebooks/book1/20/fig_20_26.ipynb',
'../notebooks/book1/20/binary_fa_demo.ipynb',
'../notebooks/book1/20/pcaEmStepByStep.ipynb',
'../notebooks/book1/20/fig_20_33.ipynb',
'../notebooks/book1/20/fig_20_24.ipynb',
'../notebooks/book1/20/ae_mnist_conv.ipynb',
'../notebooks/book1/20/skipgram_jax.ipynb',
'../notebooks/book1/20/word_analogies_jax.ipynb',
'../notebooks/book1/20/ae_mnist_tf.ipynb',
'../notebooks/book1/20/fig_20_41.ipynb',
'../notebooks/book1/20/manifold_digits_sklearn.ipynb',
'../notebooks/book1/20/mixPpcaDemo.ipynb',
'../notebooks/book1/20/skipgram_torch.ipynb',
'../notebooks/book1/20/word_analogies_torch.ipynb',
'../notebooks/book1/20/pcaOverfitDemo.ipynb',
'../notebooks/book1/20/pcaStandardization.ipynb',
'../notebooks/book1/20/manifold_swiss_sklearn.ipynb',
'../notebooks/book1/20/fig_20_37.ipynb',
'../notebooks/book1/20/pca_digits.ipynb',
'../notebooks/book1/02/iris_logreg.ipynb',
'../notebooks/book1/02/anscombes_quartet.ipynb',
'../notebooks/book1/02/datasaurus_dozen.ipynb',
'../notebooks/book1/02/gauss_plot.ipynb',
'../notebooks/book1/02/robust_pdf_plot.ipynb',
'../notebooks/book1/02/change_of_vars_demo1d.ipynb',
'../notebooks/book1/02/centralLimitDemo.ipynb',
'../notebooks/book1/02/activation_fun_plot.ipynb',
'../notebooks/book1/02/softmax_plot.ipynb',
'../notebooks/book1/02/fig_2_2.ipynb',
'../notebooks/book1/02/fig_2_17.ipynb',
'../notebooks/book1/02/gamma_dist_plot.ipynb',
'../notebooks/book1/02/linreg_1d_hetero_tfp.ipynb',
'../notebooks/book1/02/student_laplace_pdf_plot.ipynb',
'../notebooks/book1/02/beta_dist_plot.ipynb',
'../notebooks/book1/02/discrete_prob_dist_plot.ipynb',
'../notebooks/book1/02/binom_dist_plot.ipynb',
'../notebooks/book1/02/bimodal_dist_plot.ipynb',
'../notebooks/book1/02/quantile_plot.ipynb',
'../notebooks/book1/10/logreg_poly_demo.ipynb',
'../notebooks/book1/10/iris_logreg.ipynb',
'../notebooks/book1/10/logreg_laplace_demo.ipynb',
'../notebooks/book1/10/perceptron_demo_2d.ipynb',
'../notebooks/book1/10/logreg_iris_bayes_robust_1d_pymc3.ipynb',
'../notebooks/book1/10/sigmoid_2d_plot.ipynb',
'../notebooks/book1/10/iris_logreg_loss_surface.ipynb',
'../notebooks/book1/10/logreg_multiclass_demo.ipynb',
'../notebooks/book1/05/neymanPearson2.ipynb',
'../notebooks/book1/05/dtheory.ipynb',
'../notebooks/book1/05/riskFnGauss.ipynb',
'../notebooks/book1/05/linreg_eb_modelsel_vs_n.ipynb',
'../notebooks/book1/05/fig_5_2.ipynb',
'../notebooks/book1/05/roc_plot.ipynb',
'../notebooks/book1/05/fig_5_10.ipynb',
'../notebooks/book1/05/coins_model_sel_demo.ipynb',
'../notebooks/book1/05/huberLossPlot.ipynb',
'../notebooks/book1/05/pr_plot.ipynb',
'../notebooks/book1/05/twoPowerCurves.ipynb',
'../notebooks/book1/07/cholesky_demo.ipynb',
'../notebooks/book1/07/gaussEvec.ipynb',
'../notebooks/book1/07/einsum_demo.ipynb',
'../notebooks/book1/07/height_weight_whiten_plot.ipynb',
'../notebooks/book1/07/power_method_demo.ipynb',
'../notebooks/book1/07/svd_image_demo.ipynb',
'../notebooks/book1/08/smooth-vs-nonsmooth-1d.ipynb',
'../notebooks/book1/08/sgd_comparison.ipynb',
'../notebooks/book1/08/mix_gauss_singularity.ipynb',
'../notebooks/book1/08/fig_8_26.ipynb',
'../notebooks/book1/08/fig_8_14.ipynb',
'../notebooks/book1/08/lms_demo.ipynb',
'../notebooks/book1/08/mix_gauss_mle_vs_map.ipynb',
'../notebooks/book1/08/learning_rate_plot.ipynb',
'../notebooks/book1/08/saddle.ipynb',
'../notebooks/book1/08/gmm_lik_surface_plot.ipynb',
'../notebooks/book1/08/newtonsMethodNonConvex.ipynb',
'../notebooks/book1/08/extrema_fig_1d.ipynb',
'../notebooks/book1/08/mix_gauss_demo_faithful.ipynb',
'../notebooks/book1/08/lineSearchConditionNum.ipynb',
'../notebooks/book1/08/emLogLikelihoodMax.ipynb',
'../notebooks/book1/08/fig_8_1.ipynb',
'../notebooks/book1/08/lrschedule_tf.ipynb',
'../notebooks/book1/08/steepestDescentDemo.ipynb',
'../notebooks/book1/08/newtonsMethodMinQuad.ipynb',
'../notebooks/book1/22/matrix_factorization_recommender.ipynb']
In [4]:
Out[4]:
Mapping of 277 urls is saved in non_figures_url_mapping_book1.csv
{'bagging_trees': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/bagging_trees.ipynb',
'regtreeSurfaceDemo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/regtreeSurfaceDemo.ipynb',
'spam_tree_ensemble_interpret': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/spam_tree_ensemble_interpret.ipynb',
'hinge_loss_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/hinge_loss_plot.ipynb',
'boosted_regr_trees': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/boosted_regr_trees.ipynb',
'rf_demo_2d': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/rf_demo_2d.ipynb',
'dtree_sensitivity': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/dtree_sensitivity.ipynb',
'spam_tree_ensemble_compare': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/spam_tree_ensemble_compare.ipynb',
'rf_feature_importance_mnist': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/rf_feature_importance_mnist.ipynb',
'fig_18_4': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/fig_18_4.ipynb',
'naive_bayes_mnist_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/naive_bayes_mnist_torch.ipynb',
'discrim_analysis_dboundaries_plot2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/discrim_analysis_dboundaries_plot2.ipynb',
'fisher_lda_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/fisher_lda_demo.ipynb',
'fisher_discrim_vowel': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/fisher_discrim_vowel.ipynb',
'generativeVsDiscrim': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/generativeVsDiscrim.ipynb',
'naive_bayes_mnist_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/naive_bayes_mnist_jax.ipynb',
'simpsons_paradox': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/simpsons_paradox.ipynb',
'sprinkler_pgm': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/sprinkler_pgm.ipynb',
'gauss_infer_2d': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/gauss_infer_2d.ipynb',
'mix_bernoulli_em_mnist': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/mix_bernoulli_em_mnist.ipynb',
'mix_bernoulli_sgd_mnist': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/mix_bernoulli_sgd_mnist.ipynb',
'sensor_fusion_2d': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/sensor_fusion_2d.ipynb',
'gauss_plot_2d': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_plot_2d.ipynb',
'gauss_imputation_known_params_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_imputation_known_params_demo.ipynb',
'gmm_2d': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_2d.ipynb',
'correlation2d': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/correlation2d.ipynb',
'gauss_infer_1d': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/gauss_infer_1d.ipynb',
'gmm_plot_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gmm_plot_demo.ipynb',
'finetune_cnn_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/19/finetune_cnn_jax.ipynb',
'finetune_cnn_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/19/finetune_cnn_torch.ipynb',
'image_augmentation_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/19/image_augmentation_torch.ipynb',
'image_augmentation_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/19/image_augmentation_jax.ipynb',
'hbayes_maml': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/19/hbayes_maml.ipynb',
'fig_4_14': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/fig_4_14.ipynb',
'biasVarModelComplexity3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/biasVarModelComplexity3.ipynb',
'beta_binom_post_pred_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/beta_binom_post_pred_plot.ipynb',
'mixbetademo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/mixbetademo.ipynb',
'polyfitRidgeCV': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/polyfitRidgeCV.ipynb',
'beta_binom_approx_post_pymc3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/beta_binom_approx_post_pymc3.ipynb',
'iris_cov_mat': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/iris_cov_mat.ipynb',
'samplingDistributionGaussianShrinkage': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/samplingDistributionGaussianShrinkage.ipynb',
'laplace_approx_beta_binom_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/laplace_approx_beta_binom_jax.ipynb',
'dirichlet_3d_triangle_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/dirichlet_3d_triangle_plot.ipynb',
'shrinkcov_plots': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/shrinkcov_plots.ipynb',
'beta_credible_int_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/beta_credible_int_demo.ipynb',
'imdb_mlp_bow_tf': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/imdb_mlp_bow_tf.ipynb',
'dirichlet_samples_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/dirichlet_samples_plot.ipynb',
'linreg_poly_vs_n': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/linreg_poly_vs_n.ipynb',
'linreg_poly_ridge': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/linreg_poly_ridge.ipynb',
'betaHPD': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/betaHPD.ipynb',
'bootstrapDemoBer': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/bootstrapDemoBer.ipynb',
'logreg_iris_1d': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/logreg_iris_1d.ipynb',
'dirichlet_3d_spiky_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/dirichlet_3d_spiky_plot.ipynb',
'beta_binom_post_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/beta_binom_post_plot.ipynb',
'postDensityIntervals': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/postDensityIntervals.ipynb',
'ema_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/ema_demo.ipynb',
'logreg_iris_bayes_1d_pymc3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/logreg_iris_bayes_1d_pymc3.ipynb',
'fig_4_20': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/fig_4_20.ipynb',
'kernelRegressionDemo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/kernelRegressionDemo.ipynb',
'parzen_window_demo2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/parzen_window_demo2.ipynb',
'curse_dimensionality_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/curse_dimensionality_plot.ipynb',
'smoothingKernelPlot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/smoothingKernelPlot.ipynb',
'knn_voronoi_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/knn_voronoi_plot.ipynb',
'knn_classify_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/knn_classify_demo.ipynb',
'fig_11_19': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/fig_11_19.ipynb',
'splines_basis_weighted': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/splines_basis_weighted.ipynb',
'linreg_2d_bayes_centering_pymc3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_2d_bayes_centering_pymc3.ipynb',
'groupLassoDemo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/groupLassoDemo.ipynb',
'linreg_poly_vs_degree': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/linreg_poly_vs_degree.ipynb',
'linreg_post_pred_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_post_pred_plot.ipynb',
'ridgePathProstate': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/ridgePathProstate.ipynb',
'linregRobustDemoCombined': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linregRobustDemoCombined.ipynb',
'lassoPathProstate': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/lassoPathProstate.ipynb',
'fig_11_10': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/fig_11_10.ipynb',
'linreg_contours_sse_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_contours_sse_plot.ipynb',
'splines_cherry_blossoms': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/splines_cherry_blossoms.ipynb',
'splines_basis_heatmap': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/splines_basis_heatmap.ipynb',
'linsys_solve_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linsys_solve_demo.ipynb',
'linregOnlineDemo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linregOnlineDemo.ipynb',
'linreg_2d_bayes_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_2d_bayes_demo.ipynb',
'sparse_sensing_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/sparse_sensing_demo.ipynb',
'huberLossPlot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/huberLossPlot.ipynb',
'prostate_comparison': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/prostate_comparison.ipynb',
'multi_collinear_legs_numpyro': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/multi_collinear_legs_numpyro.ipynb',
'geom_ridge': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/geom_ridge.ipynb',
'svm_classifier_feature_scaling': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svm_classifier_feature_scaling.ipynb',
'kernelBinaryClassifDemo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/kernelBinaryClassifDemo.ipynb',
'svm_regression_1d': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svm_regression_1d.ipynb',
'svm_classifier_2d': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svm_classifier_2d.ipynb',
'gp_classify_spaceflu_1d_pymc3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gp_classify_spaceflu_1d_pymc3.ipynb',
'gprDemoNoiseFree': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gprDemoNoiseFree.ipynb',
'gprDemoArd': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gprDemoArd.ipynb',
'rvm_regression_1d': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/rvm_regression_1d.ipynb',
'svmCgammaDemo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svmCgammaDemo.ipynb',
'gpKernelPlot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gpKernelPlot.ipynb',
'gprDemoChangeHparams': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gprDemoChangeHparams.ipynb',
'gpr_demo_marglik': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gpr_demo_marglik.ipynb',
'gp_classify_iris_1d_pymc3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gp_classify_iris_1d_pymc3.ipynb',
'poisson_regression_insurance': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/12/poisson_regression_insurance.ipynb',
'sgd_minima_variance': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/sgd_minima_variance.ipynb',
'mlp_imdb_tf': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/mlp_imdb_tf.ipynb',
'activation_fun_deriv_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/activation_fun_deriv_jax.ipynb',
'linregRbfDemo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/linregRbfDemo.ipynb',
'activation_fun_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/activation_fun_plot.ipynb',
'sparse_mlp': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/sparse_mlp.ipynb',
'multi_gpu_training_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/multi_gpu_training_torch.ipynb',
'multi_gpu_training_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/multi_gpu_training_jax.ipynb',
'mixexpDemoOneToMany': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/mixexpDemoOneToMany.ipynb',
'logregXorDemo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/logregXorDemo.ipynb',
'mlp_mnist_tf': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/mlp_mnist_tf.ipynb',
'mlp_1d_regression_hetero_tfp': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/mlp_1d_regression_hetero_tfp.ipynb',
'xor_heaviside': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/xor_heaviside.ipynb',
'spectral_clustering_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/spectral_clustering_demo.ipynb',
'gmm_identifiability_pymc3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_identifiability_pymc3.ipynb',
'yeast_data_viz': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/yeast_data_viz.ipynb',
'gmm_chooseK_pymc3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_chooseK_pymc3.ipynb',
'hclust_yeast_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/hclust_yeast_demo.ipynb',
'agglomDemo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/agglomDemo.ipynb',
'vqDemo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/vqDemo.ipynb',
'fig_21_11': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/fig_21_11.ipynb',
'kmeans_yeast_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_yeast_demo.ipynb',
'kmeans_voronoi': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_voronoi.ipynb',
'kmeans_silhouette': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_silhouette.ipynb',
'kmeans_minibatch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_minibatch.ipynb',
'nmt_attention_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/nmt_attention_jax.ipynb',
'nmt_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/nmt_torch.ipynb',
'entailment_attention_mlp_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/entailment_attention_mlp_torch.ipynb',
'bert_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/bert_jax.ipynb',
'transformers_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/transformers_jax.ipynb',
'attention_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/attention_jax.ipynb',
'lstm_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/lstm_jax.ipynb',
'entailment_attention_mlp_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/entailment_attention_mlp_jax.ipynb',
'transformers_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/transformers_torch.ipynb',
'rnn_sentiment_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/rnn_sentiment_torch.ipynb',
'gru_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/gru_torch.ipynb',
'multi_head_attention_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/multi_head_attention_torch.ipynb',
'rnn_sentiment_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/rnn_sentiment_jax.ipynb',
'nmt_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/nmt_jax.ipynb',
'rnn_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/rnn_torch.ipynb',
'positional_encoding_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/positional_encoding_jax.ipynb',
'gru_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/gru_jax.ipynb',
'positional_encoding_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/positional_encoding_torch.ipynb',
'bert_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/bert_torch.ipynb',
'cnn1d_sentiment_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/cnn1d_sentiment_jax.ipynb',
'multi_head_attention_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/multi_head_attention_jax.ipynb',
'cnn1d_sentiment_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/cnn1d_sentiment_torch.ipynb',
'kernel_regression_attention': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/kernel_regression_attention.ipynb',
'attention_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/attention_torch.ipynb',
'lstm_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/lstm_torch.ipynb',
'nmt_attention_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/nmt_attention_torch.ipynb',
'rnn_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/rnn_jax.ipynb',
'iris_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_plot.ipynb',
'linreg_2d_surface_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/linreg_2d_surface_demo.ipynb',
'text_preproc_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/text_preproc_jax.ipynb',
'fashion_viz_tf': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/fashion_viz_tf.ipynb',
'emnist_viz_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/emnist_viz_torch.ipynb',
'tfidf_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/tfidf_demo.ipynb',
'emnist_viz_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/emnist_viz_jax.ipynb',
'mnist_viz_tf': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/mnist_viz_tf.ipynb',
'iris_pca': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_pca.ipynb',
'linreg_residuals_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/linreg_residuals_plot.ipynb',
'text_preproc_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/text_preproc_torch.ipynb',
'iris_kmeans': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_kmeans.ipynb',
'fig_1_12': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/fig_1_12.ipynb',
'fig_1_13': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/fig_1_13.ipynb',
'iris_dtree': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_dtree.ipynb',
'cifar_viz_tf': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/cifar_viz_tf.ipynb',
'seq_logo_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/seq_logo_demo.ipynb',
'MIC_correlation_2d': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/MIC_correlation_2d.ipynb',
'KLfwdReverseMixGauss': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/KLfwdReverseMixGauss.ipynb',
'bernoulli_entropy_fig': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/bernoulli_entropy_fig.ipynb',
'resnet_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/resnet_jax.ipynb',
'layer_norm_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/layer_norm_jax.ipynb',
'conv2d_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/conv2d_jax.ipynb',
'cnn_mnist_tf': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/cnn_mnist_tf.ipynb',
'cifar10_cnn_lightning': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/cifar10_cnn_lightning.ipynb',
'densenet_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/densenet_jax.ipynb',
'transposed_conv_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/transposed_conv_torch.ipynb',
'lenet_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/lenet_jax.ipynb',
'lenet_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/lenet_torch.ipynb',
'layer_norm_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/layer_norm_torch.ipynb',
'batchnorm_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/batchnorm_torch.ipynb',
'densenet_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/densenet_torch.ipynb',
'resnet_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/resnet_torch.ipynb',
'conv2d_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/conv2d_torch.ipynb',
'transposed_conv_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/transposed_conv_jax.ipynb',
'batchnorm_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/batchnorm_jax.ipynb',
'vae_mnist_conv_lightning': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/vae_mnist_conv_lightning.ipynb',
'fig_20_38': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_38.ipynb',
'fig_20_30': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_30.ipynb',
'fig_20_36': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_36.ipynb',
'pcaImageDemo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaImageDemo.ipynb',
'fig_20_31': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_31.ipynb',
'fig_20_25': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_25.ipynb',
'pca_projected_variance': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pca_projected_variance.ipynb',
'kpcaScholkopf': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/kpcaScholkopf.ipynb',
'pcaDemo2d': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaDemo2d.ipynb',
'fig_20_26': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_26.ipynb',
'binary_fa_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/binary_fa_demo.ipynb',
'pcaEmStepByStep': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaEmStepByStep.ipynb',
'fig_20_33': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_33.ipynb',
'fig_20_24': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_24.ipynb',
'ae_mnist_conv': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_conv.ipynb',
'skipgram_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/skipgram_jax.ipynb',
'word_analogies_jax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/word_analogies_jax.ipynb',
'ae_mnist_tf': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_tf.ipynb',
'fig_20_41': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_41.ipynb',
'manifold_digits_sklearn': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_digits_sklearn.ipynb',
'mixPpcaDemo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/mixPpcaDemo.ipynb',
'skipgram_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/skipgram_torch.ipynb',
'word_analogies_torch': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/word_analogies_torch.ipynb',
'pcaOverfitDemo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaOverfitDemo.ipynb',
'pcaStandardization': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaStandardization.ipynb',
'manifold_swiss_sklearn': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_swiss_sklearn.ipynb',
'fig_20_37': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_37.ipynb',
'pca_digits': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pca_digits.ipynb',
'iris_logreg': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/iris_logreg.ipynb',
'anscombes_quartet': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/anscombes_quartet.ipynb',
'datasaurus_dozen': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/datasaurus_dozen.ipynb',
'gauss_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/gauss_plot.ipynb',
'robust_pdf_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/robust_pdf_plot.ipynb',
'change_of_vars_demo1d': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/change_of_vars_demo1d.ipynb',
'centralLimitDemo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/centralLimitDemo.ipynb',
'softmax_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/softmax_plot.ipynb',
'fig_2_2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/fig_2_2.ipynb',
'fig_2_17': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/fig_2_17.ipynb',
'gamma_dist_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/gamma_dist_plot.ipynb',
'linreg_1d_hetero_tfp': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/linreg_1d_hetero_tfp.ipynb',
'student_laplace_pdf_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/student_laplace_pdf_plot.ipynb',
'beta_dist_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/beta_dist_plot.ipynb',
'discrete_prob_dist_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/discrete_prob_dist_plot.ipynb',
'binom_dist_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/binom_dist_plot.ipynb',
'bimodal_dist_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/bimodal_dist_plot.ipynb',
'quantile_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/quantile_plot.ipynb',
'logreg_poly_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_poly_demo.ipynb',
'logreg_laplace_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_laplace_demo.ipynb',
'perceptron_demo_2d': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/perceptron_demo_2d.ipynb',
'logreg_iris_bayes_robust_1d_pymc3': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_iris_bayes_robust_1d_pymc3.ipynb',
'sigmoid_2d_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/sigmoid_2d_plot.ipynb',
'iris_logreg_loss_surface': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/iris_logreg_loss_surface.ipynb',
'logreg_multiclass_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_multiclass_demo.ipynb',
'neymanPearson2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/neymanPearson2.ipynb',
'dtheory': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/dtheory.ipynb',
'riskFnGauss': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/riskFnGauss.ipynb',
'linreg_eb_modelsel_vs_n': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/linreg_eb_modelsel_vs_n.ipynb',
'fig_5_2': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/fig_5_2.ipynb',
'roc_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/roc_plot.ipynb',
'fig_5_10': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/fig_5_10.ipynb',
'coins_model_sel_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/coins_model_sel_demo.ipynb',
'pr_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/pr_plot.ipynb',
'twoPowerCurves': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/twoPowerCurves.ipynb',
'cholesky_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/cholesky_demo.ipynb',
'gaussEvec': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/gaussEvec.ipynb',
'einsum_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/einsum_demo.ipynb',
'height_weight_whiten_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/height_weight_whiten_plot.ipynb',
'power_method_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/power_method_demo.ipynb',
'svd_image_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/svd_image_demo.ipynb',
'smooth-vs-nonsmooth-1d': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/smooth-vs-nonsmooth-1d.ipynb',
'sgd_comparison': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/sgd_comparison.ipynb',
'mix_gauss_singularity': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/mix_gauss_singularity.ipynb',
'fig_8_26': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/fig_8_26.ipynb',
'fig_8_14': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/fig_8_14.ipynb',
'lms_demo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/lms_demo.ipynb',
'mix_gauss_mle_vs_map': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/mix_gauss_mle_vs_map.ipynb',
'learning_rate_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/learning_rate_plot.ipynb',
'saddle': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/saddle.ipynb',
'gmm_lik_surface_plot': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/gmm_lik_surface_plot.ipynb',
'newtonsMethodNonConvex': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/newtonsMethodNonConvex.ipynb',
'extrema_fig_1d': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/extrema_fig_1d.ipynb',
'mix_gauss_demo_faithful': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/mix_gauss_demo_faithful.ipynb',
'lineSearchConditionNum': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/lineSearchConditionNum.ipynb',
'emLogLikelihoodMax': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/emLogLikelihoodMax.ipynb',
'fig_8_1': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/fig_8_1.ipynb',
'lrschedule_tf': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/lrschedule_tf.ipynb',
'steepestDescentDemo': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/steepestDescentDemo.ipynb',
'newtonsMethodMinQuad': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/newtonsMethodMinQuad.ipynb',
'matrix_factorization_recommender': 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/22/matrix_factorization_recommender.ipynb'}
In [8]:
Upload both types of url in firestore
In [7]:
Out[7]:
spam_tree_ensemble_interpret
In [8]:
Out[8]:
Uploading...
272 urls uploaded!
In [9]:
Out[9]:
Uploading...
219 urls uploaded!
Revert back to old urls
In [15]:
Out[15]:
Uploading...
492 urls uploaded!