Path: blob/master/internal/figures_url_mapping_book1.csv
1191 views
key,url 1.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_plot.ipynb 1.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_dtree.ipynb 1.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/linreg_residuals_plot.ipynb 1.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/linreg_2d_surface_demo.ipynb 1.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/linreg_poly_vs_degree.ipynb 1.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_kmeans.ipynb 1.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_pca.ipynb 1.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/fig_1_12.ipynb 1.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/fig_1_13.ipynb 2.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/discrete_prob_dist_plot.ipynb 2.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/fig_2_2.ipynb 2.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/bimodal_dist_plot.ipynb 2.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/anscombes_quartet.ipynb 2.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/datasaurus_dozen.ipynb 2.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/binom_dist_plot.ipynb 2.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/activation_fun_plot.ipynb 2.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/iris_logreg.ipynb 2.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/softmax_plot.ipynb 2.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/iris_logreg.ipynb 2.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/linreg_1d_hetero_tfp.ipynb 2.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/student_laplace_pdf_plot.ipynb 2.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/robust_pdf_plot.ipynb 2.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/fig_2_17.ipynb 2.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/centralLimitDemo.ipynb 2.24,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/change_of_vars_demo1d.ipynb 3.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/simpsons_paradox.ipynb 3.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_plot_2d.ipynb 3.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_plot_2d.ipynb 3.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_imputation_known_params_demo.ipynb 3.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_infer_1d.ipynb 3.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_infer_2d.ipynb 3.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/sensor_fusion_2d.ipynb 3.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gmm_plot_demo.ipynb 3.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gmm_2d.ipynb 3.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/mix_bernoulli_em_mnist.ipynb 4.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/iris_cov_mat.ipynb 4.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/hinge_loss_plot.ipynb 4.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/ema_demo.ipynb 4.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/shrinkcov_plots.ipynb 4.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/linreg_poly_ridge.ipynb 4.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/polyfitRidgeCV.ipynb 4.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/imdb_mlp_bow_tf.ipynb 4.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/linreg_poly_vs_n.ipynb 4.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/beta_binom_post_plot.ipynb 4.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/beta_binom_post_pred_plot.ipynb 4.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/mixbetademo.ipynb 4.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/fig_4_14.ipynb 4.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/dirichlet_samples_plot.ipynb 4.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/gauss_infer_1d.ipynb 4.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/gauss_infer_2d.ipynb 4.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/betaHPD.ipynb 4.19,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/postDensityIntervals.ipynb 4.20,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/fig_4_20.ipynb 4.22,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/laplace_approx_beta_binom_jax.ipynb 4.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/bootstrapDemoBer.ipynb 4.24,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/samplingDistributionGaussianShrinkage.ipynb 4.25,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/biasVarModelComplexity3.ipynb 5.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/fig_5_2.ipynb 5.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/huberLossPlot.ipynb 5.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/coins_model_sel_demo.ipynb 5.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/linreg_eb_modelsel_vs_n.ipynb 5.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/linreg_eb_modelsel_vs_n.ipynb 5.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/riskFnGauss.ipynb 5.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/fig_5_10.ipynb 6.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/bernoulli_entropy_fig.ipynb 6.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/seq_logo_demo.ipynb 6.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/KLfwdReverseMixGauss.ipynb 6.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/MIC_correlation_2d.ipynb 7.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/gaussEvec.ipynb 7.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/height_weight_whiten_plot.ipynb 7.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/svd_image_demo.ipynb 7.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/svd_image_demo.ipynb 8.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/fig_8_1.ipynb 8.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/smooth-vs-nonsmooth-1d.ipynb 8.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/steepestDescentDemo.ipynb 8.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/lineSearchConditionNum.ipynb 8.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/fig_8_14.ipynb 8.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/lms_demo.ipynb 8.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/lrschedule_tf.ipynb 8.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/learning_rate_plot.ipynb 8.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/emLogLikelihoodMax.ipynb 8.25,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/mix_gauss_demo_faithful.ipynb 8.26,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/fig_8_26.ipynb 8.27,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/gmm_lik_surface_plot.ipynb 9.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/discrim_analysis_dboundaries_plot2.ipynb 9.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/discrim_analysis_dboundaries_plot2.ipynb 9.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/fisher_lda_demo.ipynb 9.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/fisher_discrim_vowel.ipynb 9.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/naive_bayes_mnist_jax.ipynb 9.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/naive_bayes_mnist_jax.ipynb 9.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/generativeVsDiscrim.ipynb 10.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/iris_logreg.ipynb 10.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/sigmoid_2d_plot.ipynb 10.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_poly_demo.ipynb 10.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/iris_logreg_loss_surface.ipynb 10.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_poly_demo.ipynb 10.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_multiclass_demo.ipynb 10.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_iris_bayes_robust_1d_pymc3.ipynb 10.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_laplace_demo.ipynb 10.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_laplace_demo.ipynb 11.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_poly_vs_degree.ipynb 11.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_contours_sse_plot.ipynb 11.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linregOnlineDemo.ipynb 11.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_poly_vs_degree.ipynb 11.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_poly_vs_degree.ipynb 11.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/geom_ridge.ipynb 11.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/fig_11_10.ipynb 11.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/prostate_comparison.ipynb 11.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/prostate_comparison.ipynb 11.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/sparse_sensing_demo.ipynb 11.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/groupLassoDemo.ipynb 11.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/groupLassoDemo.ipynb 11.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/splines_basis_weighted.ipynb 11.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/splines_basis_heatmap.ipynb 11.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/splines_cherry_blossoms.ipynb 11.19,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/fig_11_19.ipynb 11.20,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_2d_bayes_demo.ipynb 11.21,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_post_pred_plot.ipynb 11.22,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_2d_bayes_centering_pymc3.ipynb 11.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/multi_collinear_legs_numpyro.ipynb 11.24,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/multi_collinear_legs_numpyro.ipynb 12.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/12/poisson_regression_insurance.ipynb 12.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/12/poisson_regression_insurance.ipynb 13.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/xor_heaviside.ipynb 13.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/activation_fun_plot.ipynb 13.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/mlp_mnist_tf.ipynb 13.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/mlp_1d_regression_hetero_tfp.ipynb 13.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/activation_fun_deriv_jax.ipynb 13.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/sparse_mlp.ipynb 13.20,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/sgd_minima_variance.ipynb 13.21,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/logregXorDemo.ipynb 13.22,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/linregRbfDemo.ipynb 13.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/mixexpDemoOneToMany.ipynb 14.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/conv2d_jax.ipynb 14.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/conv2d_jax.ipynb 14.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/cnn_mnist_tf.ipynb 15.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/rnn_jax.ipynb 15.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/kernel_regression_attention.ipynb 15.25,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/positional_encoding_jax.ipynb 16.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/knn_voronoi_plot.ipynb 16.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/knn_classify_demo.ipynb 16.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/curse_dimensionality_plot.ipynb 16.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/smoothingKernelPlot.ipynb 16.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/parzen_window_demo2.ipynb 16.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/kernelRegressionDemo.ipynb 17.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gprDemoArd.ipynb 17.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gpKernelPlot.ipynb 17.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gpKernelPlot.ipynb 17.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gprDemoNoiseFree.ipynb 17.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gprDemoChangeHparams.ipynb 17.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gpr_demo_marglik.ipynb 17.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gp_classify_iris_1d_pymc3.ipynb 17.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gp_classify_spaceflu_1d_pymc3.ipynb 17.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svm_classifier_feature_scaling.ipynb 17.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svm_classifier_2d.ipynb 17.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svmCgammaDemo.ipynb 17.19,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/huberLossPlot.ipynb 17.20,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svm_regression_1d.ipynb 17.21,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/kernelBinaryClassifDemo.ipynb 17.22,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/rvm_regression_1d.ipynb 17.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/rvm_regression_1d.ipynb 18.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/regtreeSurfaceDemo.ipynb 18.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/dtree_sensitivity.ipynb 18.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/fig_18_4.ipynb 18.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/spam_tree_ensemble_compare.ipynb 18.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/boosted_regr_trees.ipynb 18.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/hinge_loss_plot.ipynb 18.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/rf_feature_importance_mnist.ipynb 18.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/spam_tree_ensemble_interpret.ipynb 18.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/spam_tree_ensemble_interpret.ipynb 19.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/19/image_augmentation_jax.ipynb 19.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/19/hbayes_maml.ipynb 20.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaDemo2d.ipynb 20.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pca_digits.ipynb 20.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaImageDemo.ipynb 20.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pca_projected_variance.ipynb 20.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaStandardization.ipynb 20.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaOverfitDemo.ipynb 20.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaOverfitDemo.ipynb 20.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaOverfitDemo.ipynb 20.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaEmStepByStep.ipynb 20.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/mixPpcaDemo.ipynb 20.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/binary_fa_demo.ipynb 20.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_tf.ipynb 20.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_tf.ipynb 20.19,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_tf.ipynb 20.21,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_tf.ipynb 20.24,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_24.ipynb 20.25,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_25.ipynb 20.26,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_26.ipynb 20.27,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/vae_mnist_conv_lightning.ipynb 20.30,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_30.ipynb 20.31,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_31.ipynb 20.33,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_33.ipynb 20.34,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_swiss_sklearn.ipynb 20.35,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/kpcaScholkopf.ipynb 20.36,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_36.ipynb 20.37,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_37.ipynb 20.38,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_38.ipynb 20.41,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_41.ipynb 21.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/agglomDemo.ipynb 21.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/hclust_yeast_demo.ipynb 21.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/yeast_data_viz.ipynb 21.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/hclust_yeast_demo.ipynb 21.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_voronoi.ipynb 21.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_yeast_demo.ipynb 21.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/vqDemo.ipynb 21.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_minibatch.ipynb 21.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/fig_21_11.ipynb 21.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_silhouette.ipynb 21.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_silhouette.ipynb 21.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_2d.ipynb 21.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_identifiability_pymc3.ipynb 21.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_identifiability_pymc3.ipynb 21.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_chooseK_pymc3.ipynb 21.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_chooseK_pymc3.ipynb 21.19,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/spectral_clustering_demo.ipynb 22.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/22/matrix_factorization_recommender.ipynb 22.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/22/matrix_factorization_recommender.ipynb