Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
probml
GitHub Repository: probml/pyprobml
Path: blob/master/internal/figures_url_mapping_book1.csv
1191 views
key,url
1.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_plot.ipynb
1.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_dtree.ipynb
1.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/linreg_residuals_plot.ipynb
1.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/linreg_2d_surface_demo.ipynb
1.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/linreg_poly_vs_degree.ipynb
1.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_kmeans.ipynb
1.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_pca.ipynb
1.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/fig_1_12.ipynb
1.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/fig_1_13.ipynb
2.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/discrete_prob_dist_plot.ipynb
2.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/fig_2_2.ipynb
2.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/bimodal_dist_plot.ipynb
2.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/anscombes_quartet.ipynb
2.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/datasaurus_dozen.ipynb
2.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/binom_dist_plot.ipynb
2.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/activation_fun_plot.ipynb
2.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/iris_logreg.ipynb
2.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/softmax_plot.ipynb
2.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/iris_logreg.ipynb
2.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/linreg_1d_hetero_tfp.ipynb
2.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/student_laplace_pdf_plot.ipynb
2.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/robust_pdf_plot.ipynb
2.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/fig_2_17.ipynb
2.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/centralLimitDemo.ipynb
2.24,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/change_of_vars_demo1d.ipynb
3.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/simpsons_paradox.ipynb
3.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_plot_2d.ipynb
3.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_plot_2d.ipynb
3.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_imputation_known_params_demo.ipynb
3.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_infer_1d.ipynb
3.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_infer_2d.ipynb
3.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/sensor_fusion_2d.ipynb
3.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gmm_plot_demo.ipynb
3.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gmm_2d.ipynb
3.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/mix_bernoulli_em_mnist.ipynb
4.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/iris_cov_mat.ipynb
4.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/hinge_loss_plot.ipynb
4.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/ema_demo.ipynb
4.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/shrinkcov_plots.ipynb
4.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/linreg_poly_ridge.ipynb
4.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/polyfitRidgeCV.ipynb
4.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/imdb_mlp_bow_tf.ipynb
4.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/linreg_poly_vs_n.ipynb
4.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/beta_binom_post_plot.ipynb
4.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/beta_binom_post_pred_plot.ipynb
4.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/mixbetademo.ipynb
4.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/fig_4_14.ipynb
4.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/dirichlet_samples_plot.ipynb
4.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/gauss_infer_1d.ipynb
4.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/gauss_infer_2d.ipynb
4.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/betaHPD.ipynb
4.19,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/postDensityIntervals.ipynb
4.20,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/fig_4_20.ipynb
4.22,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/laplace_approx_beta_binom_jax.ipynb
4.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/bootstrapDemoBer.ipynb
4.24,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/samplingDistributionGaussianShrinkage.ipynb
4.25,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/biasVarModelComplexity3.ipynb
5.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/fig_5_2.ipynb
5.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/huberLossPlot.ipynb
5.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/coins_model_sel_demo.ipynb
5.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/linreg_eb_modelsel_vs_n.ipynb
5.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/linreg_eb_modelsel_vs_n.ipynb
5.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/riskFnGauss.ipynb
5.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/fig_5_10.ipynb
6.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/bernoulli_entropy_fig.ipynb
6.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/seq_logo_demo.ipynb
6.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/KLfwdReverseMixGauss.ipynb
6.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/MIC_correlation_2d.ipynb
7.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/gaussEvec.ipynb
7.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/height_weight_whiten_plot.ipynb
7.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/svd_image_demo.ipynb
7.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/svd_image_demo.ipynb
8.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/fig_8_1.ipynb
8.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/smooth-vs-nonsmooth-1d.ipynb
8.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/steepestDescentDemo.ipynb
8.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/lineSearchConditionNum.ipynb
8.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/fig_8_14.ipynb
8.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/lms_demo.ipynb
8.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/lrschedule_tf.ipynb
8.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/learning_rate_plot.ipynb
8.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/emLogLikelihoodMax.ipynb
8.25,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/mix_gauss_demo_faithful.ipynb
8.26,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/fig_8_26.ipynb
8.27,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/gmm_lik_surface_plot.ipynb
9.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/discrim_analysis_dboundaries_plot2.ipynb
9.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/discrim_analysis_dboundaries_plot2.ipynb
9.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/fisher_lda_demo.ipynb
9.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/fisher_discrim_vowel.ipynb
9.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/naive_bayes_mnist_jax.ipynb
9.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/naive_bayes_mnist_jax.ipynb
9.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/generativeVsDiscrim.ipynb
10.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/iris_logreg.ipynb
10.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/sigmoid_2d_plot.ipynb
10.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_poly_demo.ipynb
10.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/iris_logreg_loss_surface.ipynb
10.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_poly_demo.ipynb
10.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_multiclass_demo.ipynb
10.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_iris_bayes_robust_1d_pymc3.ipynb
10.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_laplace_demo.ipynb
10.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_laplace_demo.ipynb
11.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_poly_vs_degree.ipynb
11.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_contours_sse_plot.ipynb
11.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linregOnlineDemo.ipynb
11.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_poly_vs_degree.ipynb
11.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_poly_vs_degree.ipynb
11.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/geom_ridge.ipynb
11.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/fig_11_10.ipynb
11.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/prostate_comparison.ipynb
11.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/prostate_comparison.ipynb
11.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/sparse_sensing_demo.ipynb
11.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/groupLassoDemo.ipynb
11.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/groupLassoDemo.ipynb
11.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/splines_basis_weighted.ipynb
11.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/splines_basis_heatmap.ipynb
11.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/splines_cherry_blossoms.ipynb
11.19,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/fig_11_19.ipynb
11.20,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_2d_bayes_demo.ipynb
11.21,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_post_pred_plot.ipynb
11.22,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_2d_bayes_centering_pymc3.ipynb
11.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/multi_collinear_legs_numpyro.ipynb
11.24,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/multi_collinear_legs_numpyro.ipynb
12.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/12/poisson_regression_insurance.ipynb
12.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/12/poisson_regression_insurance.ipynb
13.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/xor_heaviside.ipynb
13.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/activation_fun_plot.ipynb
13.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/mlp_mnist_tf.ipynb
13.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/mlp_1d_regression_hetero_tfp.ipynb
13.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/activation_fun_deriv_jax.ipynb
13.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/sparse_mlp.ipynb
13.20,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/sgd_minima_variance.ipynb
13.21,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/logregXorDemo.ipynb
13.22,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/linregRbfDemo.ipynb
13.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/mixexpDemoOneToMany.ipynb
14.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/conv2d_jax.ipynb
14.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/conv2d_jax.ipynb
14.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/cnn_mnist_tf.ipynb
15.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/rnn_jax.ipynb
15.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/kernel_regression_attention.ipynb
15.25,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/positional_encoding_jax.ipynb
16.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/knn_voronoi_plot.ipynb
16.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/knn_classify_demo.ipynb
16.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/curse_dimensionality_plot.ipynb
16.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/smoothingKernelPlot.ipynb
16.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/parzen_window_demo2.ipynb
16.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/kernelRegressionDemo.ipynb
17.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gprDemoArd.ipynb
17.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gpKernelPlot.ipynb
17.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gpKernelPlot.ipynb
17.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gprDemoNoiseFree.ipynb
17.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gprDemoChangeHparams.ipynb
17.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gpr_demo_marglik.ipynb
17.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gp_classify_iris_1d_pymc3.ipynb
17.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gp_classify_spaceflu_1d_pymc3.ipynb
17.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svm_classifier_feature_scaling.ipynb
17.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svm_classifier_2d.ipynb
17.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svmCgammaDemo.ipynb
17.19,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/huberLossPlot.ipynb
17.20,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svm_regression_1d.ipynb
17.21,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/kernelBinaryClassifDemo.ipynb
17.22,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/rvm_regression_1d.ipynb
17.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/rvm_regression_1d.ipynb
18.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/regtreeSurfaceDemo.ipynb
18.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/dtree_sensitivity.ipynb
18.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/fig_18_4.ipynb
18.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/spam_tree_ensemble_compare.ipynb
18.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/boosted_regr_trees.ipynb
18.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/hinge_loss_plot.ipynb
18.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/rf_feature_importance_mnist.ipynb
18.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/spam_tree_ensemble_interpret.ipynb
18.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/spam_tree_ensemble_interpret.ipynb
19.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/19/image_augmentation_jax.ipynb
19.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/19/hbayes_maml.ipynb
20.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaDemo2d.ipynb
20.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pca_digits.ipynb
20.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaImageDemo.ipynb
20.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pca_projected_variance.ipynb
20.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaStandardization.ipynb
20.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaOverfitDemo.ipynb
20.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaOverfitDemo.ipynb
20.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaOverfitDemo.ipynb
20.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaEmStepByStep.ipynb
20.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/mixPpcaDemo.ipynb
20.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/binary_fa_demo.ipynb
20.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_tf.ipynb
20.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_tf.ipynb
20.19,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_tf.ipynb
20.21,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_tf.ipynb
20.24,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_24.ipynb
20.25,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_25.ipynb
20.26,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_26.ipynb
20.27,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/vae_mnist_conv_lightning.ipynb
20.30,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_30.ipynb
20.31,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_31.ipynb
20.33,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_33.ipynb
20.34,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_swiss_sklearn.ipynb
20.35,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/kpcaScholkopf.ipynb
20.36,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_36.ipynb
20.37,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_37.ipynb
20.38,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_38.ipynb
20.41,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/fig_20_41.ipynb
21.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/agglomDemo.ipynb
21.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/hclust_yeast_demo.ipynb
21.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/yeast_data_viz.ipynb
21.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/hclust_yeast_demo.ipynb
21.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_voronoi.ipynb
21.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_yeast_demo.ipynb
21.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/vqDemo.ipynb
21.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_minibatch.ipynb
21.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/fig_21_11.ipynb
21.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_silhouette.ipynb
21.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_silhouette.ipynb
21.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_2d.ipynb
21.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_identifiability_pymc3.ipynb
21.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_identifiability_pymc3.ipynb
21.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_chooseK_pymc3.ipynb
21.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_chooseK_pymc3.ipynb
21.19,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/spectral_clustering_demo.ipynb
22.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/22/matrix_factorization_recommender.ipynb
22.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/22/matrix_factorization_recommender.ipynb