Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
probml
GitHub Repository: probml/pyprobml
Path: blob/master/internal/figures_url_mapping_book1_excluded_dummy_nb.csv
1191 views
key,url
1.3,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_plot.ipynb']
1.4,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_dtree.ipynb']
1.5,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/linreg_residuals_plot.ipynb']
1.6,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/linreg_2d_surface_demo.ipynb']
1.7,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/linreg_poly_vs_degree.ipynb']
1.8,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_kmeans.ipynb']
1.9,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/iris_pca.ipynb']
1.12,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/mnist_viz_tf.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/emnist_viz_jax.ipynb']"
1.13,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/fashion_viz_tf.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/01/cifar_viz_tf.ipynb']"
2.1,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/discrete_prob_dist_plot.ipynb']
2.2,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/gauss_plot.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/quantile_plot.ipynb']"
2.4,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/bimodal_dist_plot.ipynb']
2.5,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/anscombes_quartet.ipynb']
2.6,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/datasaurus_dozen.ipynb']
2.9,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/binom_dist_plot.ipynb']
2.10,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/activation_fun_plot.ipynb']
2.11,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/iris_logreg.ipynb']
2.12,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/softmax_plot.ipynb']
2.13,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/iris_logreg.ipynb']
2.14,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/linreg_1d_hetero_tfp.ipynb']
2.15,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/student_laplace_pdf_plot.ipynb']
2.16,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/robust_pdf_plot.ipynb']
2.17,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/beta_dist_plot.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/gamma_dist_plot.ipynb']"
2.23,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/centralLimitDemo.ipynb']
2.24,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/change_of_vars_demo1d.ipynb']
3.3,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/simpsons_paradox.ipynb']
3.5,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_plot_2d.ipynb']
3.6,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_plot_2d.ipynb']
3.7,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_imputation_known_params_demo.ipynb']
3.8,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_infer_1d.ipynb']
3.9,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_infer_2d.ipynb']
3.10,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/sensor_fusion_2d.ipynb']
3.11,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gmm_plot_demo.ipynb']
3.12,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gmm_2d.ipynb']
3.13,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/mix_bernoulli_em_mnist.ipynb']
4.1,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/iris_cov_mat.ipynb']
4.2,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/hinge_loss_plot.ipynb']
4.3,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/ema_demo.ipynb']
4.4,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/shrinkcov_plots.ipynb']
4.5,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/linreg_poly_ridge.ipynb']
4.7,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/polyfitRidgeCV.ipynb']
4.8,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/imdb_mlp_bow_tf.ipynb']
4.9,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/linreg_poly_vs_n.ipynb']
4.10,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/beta_binom_post_plot.ipynb']
4.12,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/beta_binom_post_pred_plot.ipynb']
4.13,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/mixbetademo.ipynb']
4.14,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/dirichlet_3d_triangle_plot.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/dirichlet_3d_spiky_plot.ipynb']"
4.15,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/dirichlet_samples_plot.ipynb']
4.16,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/gauss_infer_1d.ipynb']
4.17,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/gauss_infer_2d.ipynb']
4.18,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/betaHPD.ipynb']
4.19,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/postDensityIntervals.ipynb']
4.20,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/logreg_iris_1d.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/logreg_iris_bayes_1d_pymc3.ipynb']"
4.22,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/laplace_approx_beta_binom_jax.ipynb']
4.23,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/bootstrapDemoBer.ipynb']
4.24,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/samplingDistributionGaussianShrinkage.ipynb']
4.25,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/04/biasVarModelComplexity3.ipynb']
5.2,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/roc_plot.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/pr_plot.ipynb']"
5.3,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/huberLossPlot.ipynb']
5.4,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/coins_model_sel_demo.ipynb']
5.5,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/linreg_eb_modelsel_vs_n.ipynb']
5.6,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/linreg_eb_modelsel_vs_n.ipynb']
5.8,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/riskFnGauss.ipynb']
5.10,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/neymanPearson2.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/05/twoPowerCurves.ipynb']"
6.1,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/bernoulli_entropy_fig.ipynb']
6.2,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/seq_logo_demo.ipynb']
6.3,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/KLfwdReverseMixGauss.ipynb']
6.6,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/06/MIC_correlation_2d.ipynb']
7.6,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/gaussEvec.ipynb']
7.7,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/height_weight_whiten_plot.ipynb']
7.9,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/svd_image_demo.ipynb']
7.10,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/07/svd_image_demo.ipynb']
8.1,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/extrema_fig_1d.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/saddle.ipynb']"
8.7,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/smooth-vs-nonsmooth-1d.ipynb']
8.11,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/steepestDescentDemo.ipynb']
8.12,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/lineSearchConditionNum.ipynb']
8.14,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/newtonsMethodMinQuad.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/newtonsMethodNonConvex.ipynb']"
8.16,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/lms_demo.ipynb']
8.17,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/lrschedule_tf.ipynb']
8.18,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/learning_rate_plot.ipynb']
8.23,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/emLogLikelihoodMax.ipynb']
8.25,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/mix_gauss_demo_faithful.ipynb']
8.26,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/mix_gauss_singularity.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/mix_gauss_mle_vs_map.ipynb']"
8.27,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/gmm_lik_surface_plot.ipynb']
9.1,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/discrim_analysis_dboundaries_plot2.ipynb']
9.2,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/discrim_analysis_dboundaries_plot2.ipynb']
9.4,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/fisher_lda_demo.ipynb']
9.5,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/fisher_discrim_vowel.ipynb']
9.6,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/naive_bayes_mnist_jax.ipynb']
9.7,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/naive_bayes_mnist_jax.ipynb']
9.8,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/09/generativeVsDiscrim.ipynb']
10.1,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/iris_logreg.ipynb']
10.2,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/sigmoid_2d_plot.ipynb']
10.4,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_poly_demo.ipynb']
10.5,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/iris_logreg_loss_surface.ipynb']
10.6,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_poly_demo.ipynb']
10.7,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_multiclass_demo.ipynb']
10.10,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_iris_bayes_robust_1d_pymc3.ipynb']
10.13,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_laplace_demo.ipynb']
10.14,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/logreg_laplace_demo.ipynb']
11.1,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_poly_vs_degree.ipynb']
11.2,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_contours_sse_plot.ipynb']
11.4,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linregOnlineDemo.ipynb']
11.5,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_poly_vs_degree.ipynb']
11.6,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_poly_vs_degree.ipynb']
11.7,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/geom_ridge.ipynb']
11.10,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/ridgePathProstate.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/lassoPathProstate.ipynb']"
11.11,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/prostate_comparison.ipynb']
11.12,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/prostate_comparison.ipynb']
11.13,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/sparse_sensing_demo.ipynb']
11.14,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/groupLassoDemo.ipynb']
11.15,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/groupLassoDemo.ipynb']
11.16,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/splines_basis_weighted.ipynb']
11.17,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/splines_basis_heatmap.ipynb']
11.18,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/splines_cherry_blossoms.ipynb']
11.19,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linregRobustDemoCombined.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/huberLossPlot.ipynb']"
11.20,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_2d_bayes_demo.ipynb']
11.21,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_post_pred_plot.ipynb']
11.22,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/linreg_2d_bayes_centering_pymc3.ipynb']
11.23,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/multi_collinear_legs_numpyro.ipynb']
11.24,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/multi_collinear_legs_numpyro.ipynb']
12.1,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/12/poisson_regression_insurance.ipynb']
12.2,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/12/poisson_regression_insurance.ipynb']
13.1,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/xor_heaviside.ipynb']
13.2,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/activation_fun_plot.ipynb']
13.4,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/mlp_mnist_tf.ipynb']
13.6,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/mlp_1d_regression_hetero_tfp.ipynb']
13.14,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/activation_fun_deriv_jax.ipynb']
13.17,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/sparse_mlp.ipynb']
13.20,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/sgd_minima_variance.ipynb']
13.21,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/logregXorDemo.ipynb']
13.22,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/linregRbfDemo.ipynb']
13.23,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/mixexpDemoOneToMany.ipynb']
14.5,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/conv2d_jax.ipynb']
14.9,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/conv2d_jax.ipynb']
14.17,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/14/cnn_mnist_tf.ipynb']
15.2,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/rnn_jax.ipynb']
15.17,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/kernel_regression_attention.ipynb']
15.25,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/positional_encoding_jax.ipynb']
16.1,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/knn_voronoi_plot.ipynb']
16.2,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/knn_classify_demo.ipynb']
16.3,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/curse_dimensionality_plot.ipynb']
16.8,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/smoothingKernelPlot.ipynb']
16.9,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/parzen_window_demo2.ipynb']
16.10,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/16/kernelRegressionDemo.ipynb']
17.1,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gprDemoArd.ipynb']
17.2,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gpKernelPlot.ipynb']
17.3,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gpKernelPlot.ipynb']
17.7,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gprDemoNoiseFree.ipynb']
17.8,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gprDemoChangeHparams.ipynb']
17.9,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gpr_demo_marglik.ipynb']
17.10,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gp_classify_iris_1d_pymc3.ipynb']
17.11,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/gp_classify_spaceflu_1d_pymc3.ipynb']
17.14,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svm_classifier_feature_scaling.ipynb']
17.17,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svm_classifier_2d.ipynb']
17.18,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svmCgammaDemo.ipynb']
17.19,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/huberLossPlot.ipynb']
17.20,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/svm_regression_1d.ipynb']
17.21,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/kernelBinaryClassifDemo.ipynb']
17.22,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/rvm_regression_1d.ipynb']
17.23,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/17/rvm_regression_1d.ipynb']
18.1,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/regtreeSurfaceDemo.ipynb']
18.3,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/dtree_sensitivity.ipynb']
18.4,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/bagging_trees.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/rf_demo_2d.ipynb']"
18.5,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/spam_tree_ensemble_compare.ipynb']
18.6,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/boosted_regr_trees.ipynb']
18.7,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/hinge_loss_plot.ipynb']
18.8,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/rf_feature_importance_mnist.ipynb']
18.9,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/spam_tree_ensemble_interpret.ipynb']
18.10,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/18/spam_tree_ensemble_interpret.ipynb']
19.1,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/19/image_augmentation_jax.ipynb']
19.14,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/19/hbayes_maml.ipynb']
20.1,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaDemo2d.ipynb']
20.2,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pca_digits.ipynb']
20.3,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaImageDemo.ipynb']
20.4,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pca_projected_variance.ipynb']
20.5,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaStandardization.ipynb']
20.6,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaOverfitDemo.ipynb']
20.7,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaOverfitDemo.ipynb']
20.8,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaOverfitDemo.ipynb']
20.10,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/pcaEmStepByStep.ipynb']
20.12,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/mixPpcaDemo.ipynb']
20.13,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/binary_fa_demo.ipynb']
20.17,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_tf.ipynb']
20.18,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_tf.ipynb']
20.19,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_tf.ipynb']
20.21,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_tf.ipynb']
20.24,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/vae_mnist_conv_lightning.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_conv.ipynb']"
20.25,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/vae_mnist_conv_lightning.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_conv.ipynb']"
20.26,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/vae_mnist_conv_lightning.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/ae_mnist_conv.ipynb']"
20.27,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/vae_mnist_conv_lightning.ipynb']
20.30,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_swiss_sklearn.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_digits_sklearn.ipynb']"
20.31,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_swiss_sklearn.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_digits_sklearn.ipynb']"
20.33,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_swiss_sklearn.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_digits_sklearn.ipynb']"
20.34,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_swiss_sklearn.ipynb']
20.35,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/kpcaScholkopf.ipynb']
20.36,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_swiss_sklearn.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_digits_sklearn.ipynb']"
20.37,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_swiss_sklearn.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_digits_sklearn.ipynb']"
20.38,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_swiss_sklearn.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_digits_sklearn.ipynb']"
20.41,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_swiss_sklearn.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_digits_sklearn.ipynb']"
21.2,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/agglomDemo.ipynb']
21.4,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/hclust_yeast_demo.ipynb']
21.5,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/yeast_data_viz.ipynb']
21.6,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/hclust_yeast_demo.ipynb']
21.7,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_voronoi.ipynb']
21.8,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_yeast_demo.ipynb']
21.9,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/vqDemo.ipynb']
21.10,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_minibatch.ipynb']
21.11,"['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_silhouette.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_2d.ipynb', 'https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_silhouette.ipynb']"
21.12,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_silhouette.ipynb']
21.13,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/kmeans_silhouette.ipynb']
21.14,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_2d.ipynb']
21.15,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_identifiability_pymc3.ipynb']
21.16,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_identifiability_pymc3.ipynb']
21.17,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_chooseK_pymc3.ipynb']
21.18,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/gmm_chooseK_pymc3.ipynb']
21.19,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/21/spectral_clustering_demo.ipynb']
22.3,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/22/matrix_factorization_recommender.ipynb']
22.4,['https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/22/matrix_factorization_recommender.ipynb']