Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
probml
GitHub Repository: probml/pyprobml
Path: blob/master/internal/figures_url_mapping_book2.csv
1191 views
key,url
2.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/student_laplace_pdf_plot.ipynb
2.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/sub_super_gauss_plot.ipynb
2.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/pareto_dist_plot.ipynb
2.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/zipfs_law_plot.ipynb
2.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/gauss_plot_2d.ipynb
2.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/sensor_fusion_2d.ipynb
2.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/wishart_plot.ipynb
2.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/wishart_plot.ipynb
2.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/fig_2_10.ipynb
2.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/dirichlet_samples_plot.ipynb
2.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/bayes_change_of_var.ipynb
2.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/ecdf_sample.ipynb
2.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/ngram_character_demo.ipynb
2.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/bigram_hinton_diagram.ipynb
3.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/linreg_post_pred_plot.ipynb
3.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/fig_3_2.ipynb
3.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/gauss_infer_1d.ipynb
3.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/gauss_seq_update_sigma_1d.ipynb
3.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/nix_plots.ipynb
3.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/gauss_infer_2d.ipynb
3.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/lkj_1d.ipynb
3.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/maxent_priors.ipynb
3.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/jeffreys_prior_binomial.ipynb
3.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/hbayes_binom_rats.ipynb
3.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/schools8.ipynb
3.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/schools8.ipynb
3.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/schools8.ipynb
3.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/eb_binom.ipynb
3.21,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/newcomb_plugin_demo.ipynb
3.22,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/linreg_divorce_ppc.ipynb
4.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/04/student_pgm.ipynb
4.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/04/berksons_gaussian.ipynb
4.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/04/student_pgm.ipynb
4.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/04/gibbs_demo_ising.ipynb
4.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/04/gibbs_demo_potts.ipynb
4.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/04/hopfield_demo.ipynb
4.20,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/04/rbm_contrastive_divergence.ipynb
4.26,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/04/ising_image_denoise_demo.ipynb
5.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/05/bernoulli_entropy_fig.ipynb
5.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/05/newsgroups_visualize.ipynb
5.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/05/relevance_network_newsgroup_demo.ipynb
5.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/05/error_correcting_code_demo.ipynb
5.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/05/vib_demo_2021.ipynb
6.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/06/nat_grad_demo.ipynb
6.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/06/em_log_likelihood_max.ipynb
6.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/06/gauss_imputation_em_demo.ipynb
6.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/06/var_em_bound.ipynb
6.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/06/simulated_annealing_2d_demo.ipynb
6.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/06/simulated_annealing_2d_demo.ipynb
6.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/06/simulated_annealing_2d_demo.ipynb
7.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/07/laplace_approx_beta_binom.ipynb
7.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/07/advi_beta_binom.ipynb
7.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/07/hmc_beta_binom.ipynb
8.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/casino_hmm.ipynb
8.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/kf_tracking.ipynb
8.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/discretized_ssm_student.ipynb
8.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/discretized_ssm_student.ipynb
8.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/ekf_vs_ukf.ipynb
8.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/pendulum_1d.ipynb
8.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/ekf_vs_ukf.ipynb
8.22,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/adf_logistic_regression_demo.ipynb
8.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/adf_logistic_regression_demo.ipynb
9.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/09/gauss-bp-1d-line.ipynb
10.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/10/ising_image_denoise_demo.ipynb
10.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/10/unigauss_vb_demo.ipynb
10.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/10/variational_mixture_gaussians_demo.ipynb
10.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/10/variational_mixture_gaussians_demo.ipynb
10.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/10/variational_mixture_gaussians_demo.ipynb
10.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/10/vb_gmm.ipynb
10.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/10/svi_gmm_demo_2d.ipynb
10.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/10/kl_pq_gauss.ipynb
11.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/11/mc_estimate_pi.ipynb
11.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/11/mc_accuracy_demo.ipynb
11.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/11/rejection_sampling_demo.ipynb
11.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/11/fig_11_5.ipynb
12.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/mcmc_gmm_demo.ipynb
12.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/ising_image_denoise_demo.ipynb
12.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/mcmc_gmm_demo.ipynb
12.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/gibbs_gauss_demo.ipynb
12.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/slice_sampling_demo_1d.ipynb
12.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/slice_sampling_demo_2d.ipynb
12.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/random_walk_integers.ipynb
12.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/mcmc_traceplots_unigauss.ipynb
12.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/mcmc_traceplots_unigauss.ipynb
12.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/mcmc_traceplots_unigauss.ipynb
12.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/mcmc_traceplots_unigauss.ipynb
12.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/rhat_slow_mixing_chains.ipynb
12.19,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/mcmc_gmm_demo.ipynb
12.20,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/neals_funnel.ipynb
13.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/bootstrap_filter.ipynb
13.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/sis_vs_smc.ipynb
13.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/sis_vs_smc.ipynb
13.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/pf_guided_neural_decoding.ipynb
13.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/fig_13_6.ipynb
13.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/rbpf_maneuver_demo.ipynb
13.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/rbpf_maneuver_demo.ipynb
13.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/smc_tempered_1d_bimodal.ipynb
13.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/smc_tempered_1d_bimodal.ipynb
13.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/smc_ibis_1d.ipynb
14.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/14/softmax_plot.ipynb
15.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/linreg_height_weight.ipynb
15.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/linreg_height_weight.ipynb
15.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/fig_15_5.ipynb
15.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/logreg_laplace_demo.ipynb
15.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/logreg_laplace_demo.ipynb
15.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/logreg_iris_bayes_2d.ipynb
15.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/probit_plot.ipynb
15.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/probit_reg_demo.ipynb
15.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/linreg_hierarchical_non_centered.ipynb
15.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/linreg_hierarchical_non_centered.ipynb
15.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/linreg_hierarchical_non_centered.ipynb
16.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/16/activation_fun_deriv.ipynb
16.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/16/lecun1989.ipynb
17.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/17/mlp_priors_demo.ipynb
17.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/17/bnn_mlp_2d_hmc.ipynb
17.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/17/randomized_priors.ipynb
17.21,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/17/ekf_mlp.ipynb
17.22,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/17/bnn_hierarchical.ipynb
17.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/17/hbayes_figures2.ipynb
17.24,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/17/bnn_hierarchical.ipynb
17.25,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/17/bnn_hierarchical.ipynb
18.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gpr_demo_ard.ipynb
18.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gp_kernel_plot.ipynb
18.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gp_kernel_plot.ipynb
18.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/combining_kernels_by_multiplication.ipynb
18.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/combining_kernels_by_summation.ipynb
18.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gpr_demo_noise_free.ipynb
18.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/krr_vs_gpr.ipynb
18.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gpc_demo_2d.ipynb
18.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gp_poisson_1d.ipynb
18.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gp_spatial_demo.ipynb
18.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gpr_demo_change_hparams.ipynb
18.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gpr_demo_marglik.ipynb
18.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gp_kernel_opt.ipynb
18.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gp_spectral_mixture.ipynb
18.26,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gp_deep_kernel_learning.ipynb
18.32,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/deepgp_stepdata.ipynb
18.34,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gp_mauna_loa.ipynb
19.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/19/bnn_mnist_sgld.ipynb
19.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/19/bnn_mnist_sgld.ipynb
20.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/20/parzen_window_demo2.ipynb
20.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/20/vae_compare_results.ipynb
20.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/20/vae_celebA_lightning.ipynb
21.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/21/vae_compare_results.ipynb
21.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/21/vae_compare_results.ipynb
21.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/21/vae_latent_space.ipynb
21.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/21/vdvae_demo_cifar.ipynb
21.21,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/21/quantized_autoencoder_mnist.ipynb
23.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/23/flow_2d_mlp.ipynb
23.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/23/flow_spline_mnist.ipynb
23.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/23/two_moons_normalizing_flow.ipynb
24.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/24/score_matching_swiss_roll.ipynb
25.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/25/vdm_2d.ipynb
26.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/26/genmo_types_implicit_explicit.ipynb
26.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/26/ipm_divergences.ipynb
26.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/26/ipm_divergences.ipynb
26.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/26/gan_loss_types.ipynb
26.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/26/gan_mixture_of_gaussians.ipynb
26.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/26/dirac_gan.ipynb
26.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/26/dirac_gan.ipynb
28.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/gmm_plot_demo.ipynb
28.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/gmm_2d.ipynb
28.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/mix_bernoulli_em_mnist.ipynb
28.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/mix_ppca_demo.ipynb
28.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/mix_ppca_celebA.ipynb
28.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/mix_ppca_celebA.ipynb
28.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/mix_ppca_celebA.ipynb
28.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/binary_fa_demo.ipynb
28.19,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/gplvm_mocap.ipynb
28.31,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/ica_demo.ipynb
28.32,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/ica_demo_uniform.ipynb
28.33,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/sparse_dict_demo.ipynb
29.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_bernoulli.ipynb
29.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_gaussian_2d.ipynb
29.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_ar.ipynb
29.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_ar.ipynb
29.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_poisson_changepoint.ipynb
29.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_poisson_changepoint.ipynb
29.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_poisson_changepoint.ipynb
29.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_casino_training.ipynb
29.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_casino_training.ipynb
29.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_self_loop_dist.ipynb
29.22,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/changepoint_detection.ipynb
29.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/kf_tracking.ipynb
29.24,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/kf_linreg.ipynb
29.26,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/kf_parallel.ipynb
29.30,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/poisson_lds_example.ipynb
29.31,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/poisson_lds_example.ipynb
29.33,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/sts.ipynb
29.34,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/sts.ipynb
29.35,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/sts.ipynb
29.36,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/sts.ipynb
29.41,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/causal_impact.ipynb
30.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/30/ggm_lasso_demo.ipynb
31.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/31/stick_breaking_demo.ipynb
31.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/31/dp_mixgauss_sample.ipynb
34.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/34/ab_test_demo.ipynb
34.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/34/thompson_sampling_linear_gaussian.ipynb