Path: blob/master/internal/figures_url_mapping_book2.csv
1191 views
key,url 2.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/student_laplace_pdf_plot.ipynb 2.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/sub_super_gauss_plot.ipynb 2.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/pareto_dist_plot.ipynb 2.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/zipfs_law_plot.ipynb 2.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/gauss_plot_2d.ipynb 2.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/sensor_fusion_2d.ipynb 2.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/wishart_plot.ipynb 2.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/wishart_plot.ipynb 2.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/fig_2_10.ipynb 2.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/dirichlet_samples_plot.ipynb 2.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/bayes_change_of_var.ipynb 2.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/ecdf_sample.ipynb 2.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/ngram_character_demo.ipynb 2.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/02/bigram_hinton_diagram.ipynb 3.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/linreg_post_pred_plot.ipynb 3.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/fig_3_2.ipynb 3.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/gauss_infer_1d.ipynb 3.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/gauss_seq_update_sigma_1d.ipynb 3.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/nix_plots.ipynb 3.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/gauss_infer_2d.ipynb 3.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/lkj_1d.ipynb 3.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/maxent_priors.ipynb 3.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/jeffreys_prior_binomial.ipynb 3.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/hbayes_binom_rats.ipynb 3.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/schools8.ipynb 3.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/schools8.ipynb 3.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/schools8.ipynb 3.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/eb_binom.ipynb 3.21,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/newcomb_plugin_demo.ipynb 3.22,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/03/linreg_divorce_ppc.ipynb 4.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/04/student_pgm.ipynb 4.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/04/berksons_gaussian.ipynb 4.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/04/student_pgm.ipynb 4.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/04/gibbs_demo_ising.ipynb 4.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/04/gibbs_demo_potts.ipynb 4.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/04/hopfield_demo.ipynb 4.20,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/04/rbm_contrastive_divergence.ipynb 4.26,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/04/ising_image_denoise_demo.ipynb 5.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/05/bernoulli_entropy_fig.ipynb 5.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/05/newsgroups_visualize.ipynb 5.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/05/relevance_network_newsgroup_demo.ipynb 5.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/05/error_correcting_code_demo.ipynb 5.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/05/vib_demo_2021.ipynb 6.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/06/nat_grad_demo.ipynb 6.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/06/em_log_likelihood_max.ipynb 6.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/06/gauss_imputation_em_demo.ipynb 6.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/06/var_em_bound.ipynb 6.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/06/simulated_annealing_2d_demo.ipynb 6.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/06/simulated_annealing_2d_demo.ipynb 6.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/06/simulated_annealing_2d_demo.ipynb 7.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/07/laplace_approx_beta_binom.ipynb 7.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/07/advi_beta_binom.ipynb 7.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/07/hmc_beta_binom.ipynb 8.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/casino_hmm.ipynb 8.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/kf_tracking.ipynb 8.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/discretized_ssm_student.ipynb 8.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/discretized_ssm_student.ipynb 8.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/ekf_vs_ukf.ipynb 8.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/pendulum_1d.ipynb 8.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/ekf_vs_ukf.ipynb 8.22,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/adf_logistic_regression_demo.ipynb 8.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/08/adf_logistic_regression_demo.ipynb 9.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/09/gauss-bp-1d-line.ipynb 10.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/10/ising_image_denoise_demo.ipynb 10.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/10/unigauss_vb_demo.ipynb 10.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/10/variational_mixture_gaussians_demo.ipynb 10.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/10/variational_mixture_gaussians_demo.ipynb 10.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/10/variational_mixture_gaussians_demo.ipynb 10.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/10/vb_gmm.ipynb 10.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/10/svi_gmm_demo_2d.ipynb 10.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/10/kl_pq_gauss.ipynb 11.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/11/mc_estimate_pi.ipynb 11.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/11/mc_accuracy_demo.ipynb 11.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/11/rejection_sampling_demo.ipynb 11.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/11/fig_11_5.ipynb 12.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/mcmc_gmm_demo.ipynb 12.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/ising_image_denoise_demo.ipynb 12.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/mcmc_gmm_demo.ipynb 12.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/gibbs_gauss_demo.ipynb 12.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/slice_sampling_demo_1d.ipynb 12.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/slice_sampling_demo_2d.ipynb 12.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/random_walk_integers.ipynb 12.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/mcmc_traceplots_unigauss.ipynb 12.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/mcmc_traceplots_unigauss.ipynb 12.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/mcmc_traceplots_unigauss.ipynb 12.17,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/mcmc_traceplots_unigauss.ipynb 12.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/rhat_slow_mixing_chains.ipynb 12.19,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/mcmc_gmm_demo.ipynb 12.20,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/12/neals_funnel.ipynb 13.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/bootstrap_filter.ipynb 13.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/sis_vs_smc.ipynb 13.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/sis_vs_smc.ipynb 13.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/pf_guided_neural_decoding.ipynb 13.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/fig_13_6.ipynb 13.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/rbpf_maneuver_demo.ipynb 13.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/rbpf_maneuver_demo.ipynb 13.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/smc_tempered_1d_bimodal.ipynb 13.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/smc_tempered_1d_bimodal.ipynb 13.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/13/smc_ibis_1d.ipynb 14.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/14/softmax_plot.ipynb 15.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/linreg_height_weight.ipynb 15.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/linreg_height_weight.ipynb 15.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/fig_15_5.ipynb 15.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/logreg_laplace_demo.ipynb 15.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/logreg_laplace_demo.ipynb 15.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/logreg_iris_bayes_2d.ipynb 15.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/probit_plot.ipynb 15.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/probit_reg_demo.ipynb 15.12,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/linreg_hierarchical_non_centered.ipynb 15.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/linreg_hierarchical_non_centered.ipynb 15.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/15/linreg_hierarchical_non_centered.ipynb 16.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/16/activation_fun_deriv.ipynb 16.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/16/lecun1989.ipynb 17.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/17/mlp_priors_demo.ipynb 17.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/17/bnn_mlp_2d_hmc.ipynb 17.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/17/randomized_priors.ipynb 17.21,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/17/ekf_mlp.ipynb 17.22,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/17/bnn_hierarchical.ipynb 17.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/17/hbayes_figures2.ipynb 17.24,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/17/bnn_hierarchical.ipynb 17.25,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/17/bnn_hierarchical.ipynb 18.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gpr_demo_ard.ipynb 18.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gp_kernel_plot.ipynb 18.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gp_kernel_plot.ipynb 18.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/combining_kernels_by_multiplication.ipynb 18.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/combining_kernels_by_summation.ipynb 18.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gpr_demo_noise_free.ipynb 18.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/krr_vs_gpr.ipynb 18.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gpc_demo_2d.ipynb 18.10,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gp_poisson_1d.ipynb 18.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gp_spatial_demo.ipynb 18.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gpr_demo_change_hparams.ipynb 18.16,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gpr_demo_marglik.ipynb 18.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gp_kernel_opt.ipynb 18.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gp_spectral_mixture.ipynb 18.26,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gp_deep_kernel_learning.ipynb 18.32,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/deepgp_stepdata.ipynb 18.34,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/18/gp_mauna_loa.ipynb 19.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/19/bnn_mnist_sgld.ipynb 19.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/19/bnn_mnist_sgld.ipynb 20.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/20/parzen_window_demo2.ipynb 20.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/20/vae_compare_results.ipynb 20.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/20/vae_celebA_lightning.ipynb 21.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/21/vae_compare_results.ipynb 21.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/21/vae_compare_results.ipynb 21.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/21/vae_latent_space.ipynb 21.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/21/vdvae_demo_cifar.ipynb 21.21,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/21/quantized_autoencoder_mnist.ipynb 23.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/23/flow_2d_mlp.ipynb 23.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/23/flow_spline_mnist.ipynb 23.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/23/two_moons_normalizing_flow.ipynb 24.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/24/score_matching_swiss_roll.ipynb 25.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/25/vdm_2d.ipynb 26.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/26/genmo_types_implicit_explicit.ipynb 26.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/26/ipm_divergences.ipynb 26.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/26/ipm_divergences.ipynb 26.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/26/gan_loss_types.ipynb 26.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/26/gan_mixture_of_gaussians.ipynb 26.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/26/dirac_gan.ipynb 26.9,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/26/dirac_gan.ipynb 28.1,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/gmm_plot_demo.ipynb 28.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/gmm_2d.ipynb 28.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/mix_bernoulli_em_mnist.ipynb 28.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/mix_ppca_demo.ipynb 28.11,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/mix_ppca_celebA.ipynb 28.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/mix_ppca_celebA.ipynb 28.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/mix_ppca_celebA.ipynb 28.18,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/binary_fa_demo.ipynb 28.19,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/gplvm_mocap.ipynb 28.31,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/ica_demo.ipynb 28.32,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/ica_demo_uniform.ipynb 28.33,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/28/sparse_dict_demo.ipynb 29.2,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_bernoulli.ipynb 29.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_gaussian_2d.ipynb 29.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_ar.ipynb 29.5,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_ar.ipynb 29.6,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_poisson_changepoint.ipynb 29.7,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_poisson_changepoint.ipynb 29.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_poisson_changepoint.ipynb 29.13,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_casino_training.ipynb 29.14,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_casino_training.ipynb 29.15,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/hmm_self_loop_dist.ipynb 29.22,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/changepoint_detection.ipynb 29.23,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/kf_tracking.ipynb 29.24,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/kf_linreg.ipynb 29.26,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/kf_parallel.ipynb 29.30,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/poisson_lds_example.ipynb 29.31,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/poisson_lds_example.ipynb 29.33,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/sts.ipynb 29.34,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/sts.ipynb 29.35,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/sts.ipynb 29.36,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/sts.ipynb 29.41,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/29/causal_impact.ipynb 30.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/30/ggm_lasso_demo.ipynb 31.3,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/31/stick_breaking_demo.ipynb 31.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/31/dp_mixgauss_sample.ipynb 34.4,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/34/ab_test_demo.ipynb 34.8,https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book2/34/thompson_sampling_linear_gaussian.ipynb