Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
probml
GitHub Repository: probml/pyprobml
Path: blob/master/internal/metadata_book1.pkl
1191 views
��Z}�(�10_logistic_regression�}�(�10.01�]��iris_logreg.py�a�10.02�]��sigmoid_2d_plot.py�a�10.04�]��logreg_poly_demo.py�a�10.05�]��iris_logreg_loss_surface.py�a�10.06�]��logreg_poly_demo.py�a�10.07�]��logreg_multiclass_demo.py�a�10.10�]��$logreg_iris_bayes_robust_1d_pymc3.py�a�10.13�]��logreg_laplace_demo.py�a�10.14�]��logreg_laplace_demo.py�au�
04_statistics�}�(�04.01�]��iris_cov_mat.py�a�04.02�]��hinge_loss_plot.py�a�04.03�]��ema_demo.py�a�04.04�]��shrinkcov_plots.py�a�04.05�]��linreg_poly_ridge.py�a�04.07�]��polyfitRidgeCV.py�a�04.08�]��imdb_mlp_bow_tf.py�a�04.09�]��linreg_poly_vs_n.py�a�04.10�]��beta_binom_post_plot.py�a�04.12�]��beta_binom_post_pred_plot.py�a�04.13�]��mixbetademo.py�a�04.14�]�(�dirichlet_3d_triangle_plot.py��dirichlet_3d_spiky_plot.py�e�04.15�]��dirichlet_samples_plot.py�a�04.16�]��gauss_infer_1d.py�a�04.17�]��gauss_infer_2d.py�a�04.18�]��
betaHPD.py�a�04.19�]��postDensityIntervals.py�a�04.20�]�(�logreg_iris_1d.py��logreg_iris_bayes_1d_pymc3.py�e�04.22�]��beta_binom_approx_post_pymc3.py�a�04.23�]��bootstrapDemoBer.py�a�04.24�]��(samplingDistributionGaussianShrinkage.py�a�04.25�]��biasVarModelComplexity3.py�au�12_generalized_linear_models�}��08_optimization�}�(�08.01�]�(�extrema_fig_1d.py��	saddle.py�e�08.07�]��smooth-vs-nonsmooth-1d.py�a�08.11�]��steepestDescentDemo.py�a�08.12�]��lineSearchConditionNum.py�a�08.14�]�(�newtonsMethodMinQuad.py��newtonsMethodNonConvex.py�e�08.16�]��lms_demo.py�a�08.18�]��learning_rate_plot.py�a�08.23�]��emLogLikelihoodMax.py�a�08.25�]��mix_gauss_demo_faithful.py�a�08.26�]�(�mix_gauss_singularity.py��mix_gauss_mle_vs_map.py�e�08.27�]��gmm_lik_surface_plot.py�au�11_linear_regression�}�(�11.01�]��linreg_poly_vs_degree.py�a�11.02�]��linreg_contours_sse_plot.py�a�11.04�]��linregOnlineDemo.py�a�11.05�]��linreg_poly_vs_degree.py�a�11.06�]��linreg_poly_vs_degree.py�a�11.07�]��
geom_ridge.py�a�11.10�]�(�ridgePathProstate.py��lassoPathProstate.py�e�11.11�]��prostate_comparison.py�a�11.12�]��prostate_comparison.py�a�11.13�]��sparse_sensing_demo.py�a�11.14�]��groupLassoDemo.py�a�11.15�]��groupLassoDemo.py�a�11.16�]��splines_basis_weighted.py�a�11.17�]��splines_basis_heatmap.py�a�11.18�]��splines_cherry_blossoms.py�a�11.19�]�(�linregRobustDemoCombined.py��huberLossPlot.py�e�11.20�]��linreg_2d_bayes_demo.py�a�11.21�]��linreg_post_pred_plot.py�a�11.22�]��"linreg_2d_bayes_centering_pymc3.py�a�11.23�]��multi_collinear_legs_numpyro.py�a�11.24�]��multi_collinear_legs_numpyro.py�au�06_information_theory�}�(�06.01�]��bernoulli_entropy_fig.py�a�06.02�]��seq_logo_demo.py�a�06.03�]��KLfwdReverseMixGauss.py�au�17_kernel_methods�}�(�17.01�]��
gprDemoArd.py�a�17.02�]��gpKernelPlot.py�a�17.03�]��gpKernelPlot.py�a�17.07�]��gprDemoNoiseFree.py�a�17.08�]��gprDemoChangeHparams.py�a�17.09�]��gpr_demo_marglik.py�a�17.10�]��gp_classify_iris_1d_pymc3.py�a�17.11�]�� gp_classify_spaceflu_1d_pymc3.py�a�17.14�]��!svm_classifier_feature_scaling.py�a�17.17�]��svm_classifier_2d.py�a�17.18�]��svmCgammaDemo.py�a�17.19�]��huberLossPlot.py�a�17.20�]��svm_regression_1d.py�a�17.21�]��kernelBinaryClassifDemo.py�a�17.22�]��rvm_regression_1d.py�a�17.23�]��rvm_regression_1d.py�au�09_linear_discriminant_analysis�}�(�09.01�]��%discrim_analysis_dboundaries_plot2.py�a�09.02�]��%discrim_analysis_dboundaries_plot2.py�a�09.04�]��fisher_lda_demo.py�a�09.05�]��fisher_discrim_vowel.py�a�09.08�]��generativeVsDiscrim.py�au� 02_probability_univariate_models�}�(�02.01�]��discrete_prob_dist_plot.py�a�02.02�]�(�
gauss_plot.py��quantile_plot.py�e�02.04�]��bimodal_dist_plot.py�a�02.05�]��anscombes_quartet.py�a�02.06�]��datasaurus_dozen.py�a�02.09�]��binom_dist_plot.py�a�02.10�]��activation_fun_plot.py�a�02.11�]��iris_logreg.py�a�02.12�]��softmax_plot.py�a�02.13�]��iris_logreg.py�a�02.14�]��linreg_1d_hetero_tfp.py�a�02.15�]��student_laplace_pdf_plot.py�a�02.16�]��robust_pdf_plot.py�a�02.17�]�(�beta_dist_plot.py��gamma_dist_plot.py�e�02.23�]��centralLimitDemo.py�a�02.24�]��change_of_vars_demo1d.py�au�01_introduction�}�(�01.03�]��iris_plot.py�a�01.05�]��linreg_residuals_plot.py�a�01.06�]��linreg_2d_surface_demo.py�a�01.07�]��linreg_poly_vs_degree.py�a�01.08�]��iris_kmeans.py�a�01.09�]��iris_pca.py�a�01.12�]�(�mnist_viz_tf.py��emnist_viz_pytorch.py�e�01.13�]�(�fashion_viz_tf.py��cifar_viz_tf.py�eu�'19_learning_with_fewer_labeled_examples�}��22_recommender_systems�}��05_decision_theory�}�(�05.02�]�(�roc_plot.py��
pr_plot.py�e�05.03�]��huberLossPlot.py�a�05.04�]��coins_model_sel_demo.py�a�05.05�]��linreg_eb_modelsel_vs_n.py�a�05.06�]��linreg_eb_modelsel_vs_n.py�a�05.08�]��riskFnGauss.py�a�05.10�]�(�neymanPearson2.py��twoPowerCurves.py�eu�23_graph_embeddings�}�� 15_neural_networks_for_sequences�}��20_dimensionality_reduction�}�(�20.01�]��pcaDemo2d.py�a�20.02�]��
pca_digits.py�a�20.03�]��pcaImageDemo.py�a�20.04�]��pca_projected_variance.py�a�20.05�]��pcaStandardization.py�a�20.06�]��pcaOverfitDemo.py�a�20.07�]��pcaOverfitDemo.py�a�20.08�]��pcaOverfitDemo.py�a�20.10�]��pcaEmStepByStep.py�a�20.12�]��mixPpcaDemo.py�a�20.13�]��binary_fa_demo.py�a�20.30�]�(�manifold_swiss_sklearn.py��manifold_digits_sklearn.py�e�20.31�]�(�manifold_swiss_sklearn.py��manifold_digits_sklearn.py�e�20.33�]�(�manifold_swiss_sklearn.py��manifold_digits_sklearn.py�e�20.34�]��manifold_swiss_sklearn.py�a�20.35�]��kpcaScholkopf.py�a�20.36�]�(�manifold_swiss_sklearn.py��manifold_digits_sklearn.py�e�20.37�]�(�manifold_swiss_sklearn.py��manifold_digits_sklearn.py�e�20.38�]�(�manifold_swiss_sklearn.py��manifold_digits_sklearn.py�e�20.41�]�(�manifold_swiss_sklearn.py��manifold_digits_sklearn.py�eu�14_neural_networks_for_images�}��&13_neural_networks_for_structured_data�}�(�13.01�]��xor_heaviside.py�a�13.02�]��activation_fun_plot.py�a�13.21�]��logregXorDemo.py�a�13.22�]��linregRbfDemo.py�a�13.23�]��mixexpDemoOneToMany.py�au�16_exemplar-based_methods�}�(�16.01�]��knn_voronoi_plot.py�a�16.02�]��knn_classify_demo.py�a�16.03�]��curse_dimensionality_plot.py�a�16.08�]��smoothingKernelPlot.py�a�16.09�]��parzen_window_demo2.py�a�16.10�]��kernelRegressionDemo.py�au�%18_trees_forests_bagging_and_boosting�}�(�18.01�]��regtreeSurfaceDemo.py�a�18.03�]��dtree_sensitivity.py�a�18.04�]�(�bagging_trees.py��
rf_demo_2d.py�e�18.05�]��spam_tree_ensemble_compare.py�a�18.06�]��boosted_regr_trees.py�a�18.07�]��hinge_loss_plot.py�a�18.08�]��rf_feature_importance_mnist.py�a�18.09�]��spam_tree_ensemble_interpret.py�a�18.10�]��spam_tree_ensemble_interpret.py�au�
21_clustering�}�(�21.02�]��
agglomDemo.py�a�21.04�]��hclust_yeast_demo.py�a�21.05�]��yeast_data_viz.py�a�21.06�]��hclust_yeast_demo.py�a�21.07�]��kmeans_voronoi.py�a�21.08�]��kmeans_yeast_demo.py�a�21.09�]��	vqDemo.py�a�21.10�]��kmeans_minibatch.py�a�21.11�]�(�kmeans_silhouette.py��	gmm_2d.py��kmeans_silhouette.py�e�21.12�]��kmeans_silhouette.py�a�21.13�]��kmeans_silhouette.py�a�21.14�]��	gmm_2d.py�a�21.15�]��gmm_identifiability_pymc3.py�a�21.16�]��gmm_identifiability_pymc3.py�a�21.19�]��spectral_clustering_demo.py�au�"03_probability_multivariate_models�}�(�03.05�]��gauss_plot_2d.py�a�03.06�]��gauss_plot_2d.py�a�03.07�]��%gauss_imputation_known_params_demo.py�a�03.08�]��gauss_infer_1d.py�a�03.09�]��gauss_infer_2d.py�a�03.10�]��sensor_fusion_2d.py�a�03.11�]��gmm_plot_demo.py�a�03.12�]��	gmm_2d.py�a�03.13�]��mix_bernoulli_em_mnist.py�au�07_linear_algebra�}�(�07.06�]��gaussEvec.py�a�07.07�]��height_weight_whiten_plot.py�a�07.09�]��svd_image_demo.py�a�07.10�]��svd_image_demo.py�auu.