Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
probml
GitHub Repository: probml/pyprobml
Path: blob/master/notebooks/book1/01/cifar_viz_tf.ipynb
1192 views
Kernel: Unknown Kernel
# Based on # https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/keras/basic_classification.ipynb # (MIT License) from __future__ import absolute_import, division, print_function try: from tensorflow import keras except ModuleNotFoundError: %pip install -qq tensorflow from tensorflow import keras import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import os figdir = "figures" def savefig(fname): plt.savefig(os.path.join(figdir, fname)) np.random.seed(0) data = keras.datasets.cifar10 (train_images, train_labels), (test_images, test_labels) = data.load_data() # print(np.shape(train_images)) # print(np.shape(test_images)) # For CIFAR: # (50000, 32, 32, 3) # (10000, 32, 32, 3) class_names = ["plane", "car", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"] plt.figure(figsize=(10, 10)) for i in range(25): plt.subplot(5, 5, i + 1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i]) y = train_labels[i][0] plt.xlabel(class_names[y]) savefig("cifar10-data.pdf") plt.show()