Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
probml
GitHub Repository: probml/pyprobml
Path: blob/master/notebooks/book1/01/iris_plot.ipynb
1192 views
Kernel: Unknown Kernel
import numpy as np import matplotlib.pyplot as plt import os try: import probml_utils as pml except ModuleNotFoundError: %pip install -qq git+https://github.com/probml/probml-utils.git import probml_utils as pml import seaborn as sns; sns.set(style="ticks", color_codes=True) try: import pandas as pd except ModuleNotFoundError: %pip install -qq pandas import pandas as pd pd.set_option('display.precision', 2) # 2 decimal places pd.set_option('display.max_rows', 20) pd.set_option('display.max_columns', 30) pd.set_option('display.width', 100) # wide windows try: import sklearn except ModuleNotFoundError: %pip install -qq scikit-learn import sklearn from sklearn.datasets import load_iris iris = load_iris() # Extract numpy arrays X = iris.data y = iris.target # Convert to pandas dataframe df = pd.DataFrame(data=X, columns=iris.feature_names) df['label'] = pd.Series(iris.target_names[y], dtype='category') # we pick a color map to match that used by decision tree graphviz #cmap = ListedColormap(['#fafab0','#a0faa0', '#9898ff']) # orange, green, blue/purple #cmap = ListedColormap(['orange', 'green', 'purple']) palette = {'setosa': 'orange', 'versicolor': 'green', 'virginica': 'purple'} g = sns.pairplot(df, vars = df.columns[0:4], hue="label", palette=palette) #g = sns.pairplot(df, vars = df.columns[0:4], hue="label") pml.savefig('iris_scatterplot_purple.pdf') plt.show() # Change colum names iris_df = df.copy() iris_df.columns = ['sl', 'sw', 'pl', 'pw'] + ['label'] g = sns.pairplot(iris_df, vars = iris_df.columns[0:4], hue="label") plt.tight_layout() pml.savefig('iris_pairplot.pdf') plt.show() sns.stripplot(x="label", y="sl", data=iris_df, jitter=True) pml.savefig('iris_sepal_length_strip_plot.pdf') plt.show()