Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
probml
GitHub Repository: probml/pyprobml
Path: blob/master/notebooks/book1/01/mnist_viz_tf.ipynb
1192 views
Kernel: Unknown Kernel
try: from tensorflow import keras except ModuleNotFoundError: %pip install -qq tensorflow from tensorflow import keras import tensorflow as tf import numpy as np import scipy import matplotlib.pyplot as plt try: import pandas as pd except ModuleNotFoundError: %pip install -qq pandas import pandas as pd try: import sklearn except ModuleNotFoundError: %pip install -qq scikit-learn import sklearn from time import time import os figdir = "figures" def savefig(fname): plt.savefig(os.path.join(figdir, fname)) # print(tf.__version__) np.random.seed(0) mnist = keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() train_images = train_images / 255.0 test_images = test_images / 255.0 # print(np.shape(train_images)) # print(np.shape(test_images)) #(60000, 28, 28) #(10000, 28, 28) plt.figure(figsize=(10, 10)) for i in range(25): plt.subplot(5, 5, i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) savefig("mnist-data.pdf") plt.show()