Sequential(
(0): Sequential(
(0): Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
)
(1): DenseBlock(
(net): Sequential(
(0): Sequential(
(0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(1): Sequential(
(0): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(96, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(2): Sequential(
(0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(3): Sequential(
(0): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(160, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
(2): Sequential(
(0): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1))
(3): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(3): DenseBlock(
(net): Sequential(
(0): Sequential(
(0): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(96, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(1): Sequential(
(0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(2): Sequential(
(0): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(160, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(3): Sequential(
(0): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(192, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
(4): Sequential(
(0): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(224, 112, kernel_size=(1, 1), stride=(1, 1))
(3): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(5): DenseBlock(
(net): Sequential(
(0): Sequential(
(0): BatchNorm2d(112, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(112, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(1): Sequential(
(0): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(144, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(2): Sequential(
(0): BatchNorm2d(176, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(176, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(3): Sequential(
(0): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(208, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
(6): Sequential(
(0): BatchNorm2d(240, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(240, 120, kernel_size=(1, 1), stride=(1, 1))
(3): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(7): DenseBlock(
(net): Sequential(
(0): Sequential(
(0): BatchNorm2d(120, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(120, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(1): Sequential(
(0): BatchNorm2d(152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(152, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(2): Sequential(
(0): BatchNorm2d(184, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(184, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(3): Sequential(
(0): BatchNorm2d(216, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): ReLU()
(2): Conv2d(216, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
(8): BatchNorm2d(248, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(9): ReLU()
(10): AdaptiveMaxPool2d(output_size=(1, 1))
(11): Flatten(start_dim=1, end_dim=-1)
(12): Linear(in_features=248, out_features=10, bias=True)
)