Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
probml
GitHub Repository: probml/pyprobml
Path: blob/master/notebooks/book1/14/transposed_conv_torch.ipynb
1192 views
Kernel: Python [conda env:pymc_exp]
# Based on http://d2l.ai/chapter_computer-vision/transposed-conv.html try: import torch except ModuleNotFoundError: %pip install -qq torch import torch from torch import nn import numpy as np
def trans_conv(X, K): h, w = K.shape Y = torch.zeros((X.shape[0] + h - 1, X.shape[1] + w - 1)) for i in range(X.shape[0]): for j in range(X.shape[1]): Y[i : i + h, j : j + w] += X[i, j] * K return Y # Example from D2L fig 13.10.1 X = torch.tensor([[0.0, 1], [2, 3]]) K = torch.tensor([[0.0, 1], [2, 3]]) Y = trans_conv(X, K) print(Y) X, K = X.reshape(1, 1, 2, 2), K.reshape(1, 1, 2, 2) tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, bias=False) tconv.weight.data = K Y2 = tconv(X) # print(Y2) assert torch.allclose(Y, Y2) """ X, K = X.reshape(1, 1, 2, 2), K.reshape(1, 1, 2, 2) tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, padding = 1, bias=False) tconv.weight.data = K Y2 = tconv(X) print('Y2', Y2) """ # Transposed Matrix multiplication K = torch.tensor([[1, 2], [3, 4]]) def kernel2matrix(K): k, W = torch.zeros(5), torch.zeros((4, 9)) k[:2], k[3:5] = K[0, :], K[1, :] W[0, :5], W[1, 1:6], W[2, 3:8], W[3, 4:] = k, k, k, k return W W = kernel2matrix(K) X = torch.tensor([[0.0, 1], [2, 3]]) Y = trans_conv(X, K) Y2 = torch.mv(W.T, X.reshape(-1)).reshape(3, 3) assert torch.allclose(Y, Y2) # Example from Geron fig 14.27 X = torch.ones((2, 3)) K = torch.ones(3, 3) X, K = X.reshape(1, 1, 2, 3), K.reshape(1, 1, 3, 3) tconv = nn.ConvTranspose2d(1, 1, kernel_size=3, stride=2, bias=False) tconv.weight.data = K Y2 = tconv(X) print(Y2.shape)
tensor([[ 0., 0., 1.], [ 0., 4., 6.], [ 4., 12., 9.]]) torch.Size([1, 1, 5, 7])