def trans_conv(X, K):
h, w = K.shape
Y = torch.zeros((X.shape[0] + h - 1, X.shape[1] + w - 1))
for i in range(X.shape[0]):
for j in range(X.shape[1]):
Y[i : i + h, j : j + w] += X[i, j] * K
return Y
X = torch.tensor([[0.0, 1], [2, 3]])
K = torch.tensor([[0.0, 1], [2, 3]])
Y = trans_conv(X, K)
print(Y)
X, K = X.reshape(1, 1, 2, 2), K.reshape(1, 1, 2, 2)
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, bias=False)
tconv.weight.data = K
Y2 = tconv(X)
assert torch.allclose(Y, Y2)
"""
X, K = X.reshape(1, 1, 2, 2), K.reshape(1, 1, 2, 2)
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, padding = 1, bias=False)
tconv.weight.data = K
Y2 = tconv(X)
print('Y2', Y2)
"""
K = torch.tensor([[1, 2], [3, 4]])
def kernel2matrix(K):
k, W = torch.zeros(5), torch.zeros((4, 9))
k[:2], k[3:5] = K[0, :], K[1, :]
W[0, :5], W[1, 1:6], W[2, 3:8], W[3, 4:] = k, k, k, k
return W
W = kernel2matrix(K)
X = torch.tensor([[0.0, 1], [2, 3]])
Y = trans_conv(X, K)
Y2 = torch.mv(W.T, X.reshape(-1)).reshape(3, 3)
assert torch.allclose(Y, Y2)
X = torch.ones((2, 3))
K = torch.ones(3, 3)
X, K = X.reshape(1, 1, 2, 3), K.reshape(1, 1, 3, 3)
tconv = nn.ConvTranspose2d(1, 1, kernel_size=3, stride=2, bias=False)
tconv.weight.data = K
Y2 = tconv(X)
print(Y2.shape)