Path: blob/master/notebooks/book1/21/yeast_data_viz.ipynb
1192 views
Kernel: Unknown Kernel
In [ ]:
from scipy.io import loadmat try: from sklearn.cluster import KMeans except ModuleNotFoundError: %pip install -qq scikit-learn from sklearn.cluster import KMeans import matplotlib.pyplot as plt try: import probml_utils as pml except ModuleNotFoundError: %pip install -qq git+https://github.com/probml/probml-utils.git import probml_utils as pml from matplotlib import cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap import requests from io import BytesIO url = 'https://github.com/probml/probml-data/blob/main/data/yeastData310.mat?raw=true' response = requests.get(url) rawdata = BytesIO(response.content) data = loadmat(rawdata) # dictionary containing 'X', 'genes', 'times' X = data['X'] times = data['times'] X = X.transpose() times = times.reshape((7,)) # yeast gene expression data plotted as a time series plt.figure() plt.plot(times, X, 'o-') plt.title('yeast microarray data') plt.xlabel('time') plt.ylabel('genes') plt.xlim([0, max(times)]) plt.xticks(ticks=times, labels=times) pml.savefig("yeastTimeSeries.pdf") plt.show() # yeast gene expression data plotted as a heat map plt.figure() basic_cols = ['#66ff00', '#000000', '#FF0000'] # green-black-red my_cmap = LinearSegmentedColormap.from_list('mycmap', basic_cols) plt.xticks(ticks=[i + 0.5 for i in range(0, 7)], labels=times) plt.pcolormesh(X.transpose(), cmap=my_cmap) plt.title('yeast microarray data') plt.xlabel('time') plt.ylabel('genes') plt.colorbar() pml.savefig("yeastHeatMap.pdf") plt.show()