Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
probml
GitHub Repository: probml/pyprobml
Path: blob/master/notebooks/book2/15/tests_as_linear_models.ipynb
1193 views
Kernel: Python 3

Show that standard tests can be implemented as inference on linear models.

Code is from https://www.georgeho.org/tests-as-linear/

!git clone https://github.com/eigenfoo/tests-as-linear.git
Cloning into 'tests-as-linear'... remote: Enumerating objects: 227, done. remote: Counting objects: 100% (6/6), done. remote: Compressing objects: 100% (6/6), done. remote: Total 227 (delta 1), reused 0 (delta 0), pack-reused 221 Receiving objects: 100% (227/227), 5.05 MiB | 20.05 MiB/s, done. Resolving deltas: 100% (129/129), done.
%cd tests-as-linear
/content/tests-as-linear
%ls
cheatsheets/ index.html README.md scripts/ CODE_OF_CONDUCT.md LICENSE.txt requirements-dev.txt tests_as_linear/ CONTRIBUTING.md Makefile requirements.txt tests-as-linear.ipynb
import matplotlib.pyplot as plt import numpy as np import pandas as pd import patsy import scipy import statsmodels.api as sm import statsmodels.formula.api as smf from tests_as_linear import plots, utils np.random.seed(1618)
plots.pearson_spearman_plot() plt.show()
Image in a Jupyter notebook