Path: blob/master/notebooks/book2/18/gp_spectral_mixture.ipynb
2286 views
Kernel: Python [conda env:pyprobml]
Spectral mixture kernel in 1d for GP
https://tinygp.readthedocs.io/en/latest/tutorials/kernels.html#example-spectral-mixture-kernel
In this section, we will implement the "spectral mixture kernel" proposed by Gordon Wilson & Adams (2013).
In [1]:
In [2]:
Out[2]:
/home/patel_zeel/miniconda3/envs/pyprobml/lib/python3.7/site-packages/probml_utils/plotting.py:26: UserWarning: LATEXIFY environment variable not set, not latexifying
warnings.warn("LATEXIFY environment variable not set, not latexifying")
In [3]:
Now let's implement the simulate some data from this model:
In [4]:
Out[4]:
WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)
One thing to note here is that we've used named parameters in a dictionary, instead of an array of parameters as in some of the other examples. This would be awkward (but not impossible) to fit using scipy, so instead we'll use optax for optimization:
In [5]:
Out[5]:
/home/patel_zeel/miniconda3/envs/pyprobml/lib/python3.7/site-packages/probml_utils/plotting.py:79: UserWarning: set FIG_DIR environment variable to save figures
warnings.warn("set FIG_DIR environment variable to save figures")
Using our optimized model, over-plot the conditional predictions:
In [6]:
Out[6]:
/home/patel_zeel/miniconda3/envs/pyprobml/lib/python3.7/site-packages/probml_utils/plotting.py:79: UserWarning: set FIG_DIR environment variable to save figures
warnings.warn("set FIG_DIR environment variable to save figures")