1 | Introduction | 01/ |
2 | Probability | 02/ |
3 | Bayesian statistics | 03/ |
4 | Probabilistic graphical models | 04/ |
5 | Information theory | 05/ |
6 | Inference algorithms: an overview | inf/ |
7 | Optimization | opt/ |
8 | Inference for state-space models | 08/ |
9 | Inference for graphical models | 09/ |
10 | Variational inference | 10/ |
11 | Monte Carlo inference | 11/ |
12 | Markov Chain Monte Carlo inference | 12/ |
13 | Sequential Monte Carlo inference | 13/ |
14 | Predictive models: an overview | 14/ |
15 | Generalized linear models | 15/ |
16 | Deep neural networks | 16/ |
17 | Bayesian neural networks | 17/ |
18 | Gaussian processes | 18/ |
19 | Beyond the iid assumption | 19/ |
20 | Generative models: an overview | 20/ |
21 | Variational autoencoders | 21/ |
22 | Auto-regressive models | 22/ |
23 | Normalizing Flows | 23/ |
24 | Energy-based models | 24/ |
25 | Diffusion models | 25/ |
26 | Generative adversarial networks | 26/ |
27 | Discovery methods: an overview | 27/ |
28 | Latent factor models | 28/ |
29 | State-space models | 29/ |
30 | Graph learning | 30/ |
31 | Non-parametric Bayesian models | 31/ |
32 | Representation learning | 32/ |
33 | Interpretability | 33/ |
34 | Decision making under uncertainty | 34/ |
35 | Reinforcement learning | 35/ |
36 | Causality | 36/ |