Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
probml
GitHub Repository: probml/pyprobml
Path: blob/master/notebooks/book2/README.md
1192 views

Probabilistic Machine Learning: Advanced Topics

Chapters

chap_nochap_nameNotebook
1Introduction01/
2Probability02/
3Bayesian statistics03/
4Probabilistic graphical models04/
5Information theory05/
6Inference algorithms: an overviewinf/
7Optimizationopt/
8Inference for state-space models08/
9Inference for graphical models09/
10Variational inference10/
11Monte Carlo inference11/
12Markov Chain Monte Carlo inference12/
13Sequential Monte Carlo inference13/
14Predictive models: an overview14/
15Generalized linear models15/
16Deep neural networks16/
17Bayesian neural networks17/
18Gaussian processes18/
19Beyond the iid assumption19/
20Generative models: an overview20/
21Variational autoencoders21/
22Auto-regressive models22/
23Normalizing Flows23/
24Energy-based models24/
25Diffusion models25/
26Generative adversarial networks26/
27Discovery methods: an overview27/
28Latent factor models28/
29State-space models29/
30Graph learning30/
31Non-parametric Bayesian models31/
32Representation learning32/
33Interpretability33/
34Decision making under uncertainty34/
35Reinforcement learning35/
36Causality36/