Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
probml
GitHub Repository: probml/pyprobml
Path: blob/master/notebooks/misc/dcgan_fashion_tf.ipynb
1192 views
Kernel: Python 3

Open In Colab

Deep convolutional generative adversarial networks (DCGAN)

This tutorial fits a DC-GAN to Fashion-MNIST. The code is based on https://www.tensorflow.org/beta/tutorials/generative/dcgan

from __future__ import absolute_import, division, print_function, unicode_literals
try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass
TensorFlow 2.x selected.
import tensorflow as tf
tf.__version__
'2.0.0-rc0'
import glob import imageio import matplotlib.pyplot as plt import numpy as np import os import PIL from tensorflow.keras import layers import time from IPython import display

Load and prepare the dataset

You will use the MNIST dataset to train the generator and the discriminator. The generator will generate handwritten digits resembling the MNIST data.

(train_images, train_labels), (_, _) = tf.keras.datasets.fashion_mnist.load_data() # (train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype("float32") # train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1] train_images = train_images / 255 # Normalize the images to [0,1] train_images = (train_images * 2) - 1 # Normalize the images to [-1, 1]
BUFFER_SIZE = 60000 BATCH_SIZE = 256
# Batch and shuffle the data train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)

Create the models

Both the generator and discriminator are defined using the Keras Sequential API.

The Generator

The generator uses tf.keras.layers.Conv2DTranspose (upsampling) layers to produce an image from a seed (random noise). Start with a Dense layer that takes this seed as input, then upsample several times until you reach the desired image size of 28x28x1. Notice the tf.keras.layers.LeakyReLU activation for each layer, except the output layer which uses tanh.

def make_generator_model(): model = tf.keras.Sequential() model.add(layers.Dense(7 * 7 * 256, use_bias=False, input_shape=(100,))) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Reshape((7, 7, 256))) assert model.output_shape == (None, 7, 7, 256) # Note: None is the batch size model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding="same", use_bias=False)) assert model.output_shape == (None, 7, 7, 128) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding="same", use_bias=False)) assert model.output_shape == (None, 14, 14, 64) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add( layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding="same", use_bias=False, activation="tanh") ) # assumes output is [-1,1] # model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='sigmoid')) # assumes output is [0,1] assert model.output_shape == (None, 28, 28, 1) return model

Use the (as yet untrained) generator to create an image.

generator = make_generator_model() noise = tf.random.normal([1, 100]) generated_image = generator(noise, training=False) plt.imshow(generated_image[0, :, :, 0], cmap="binary")
<matplotlib.image.AxesImage at 0x7f2e503d5fd0>
Image in a Jupyter notebook

The Discriminator

The discriminator is a CNN-based image classifier.

def make_discriminator_model(): model = tf.keras.Sequential() model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding="same", input_shape=[28, 28, 1])) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding="same")) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Flatten()) model.add(layers.Dense(1)) # model.add(layers.Dense(1, activation="sigmoid")) # cross-entropy loss assumes logits as input return model

Use the (as yet untrained) discriminator to classify the generated images as real or fake. The model will be trained to output positive values for real images, and negative values for fake images.

discriminator = make_discriminator_model() decision = discriminator(generated_image) print(decision)
tf.Tensor([[0.00071007]], shape=(1, 1), dtype=float32)

Define the loss and optimizers

Define loss functions and optimizers for both models.

# This method returns a helper function to compute cross entropy loss cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True) # don't need sigmoid on output of discriminator

Discriminator loss

This method quantifies how well the discriminator is able to distinguish real images from fakes. It compares the discriminator's predictions on real images to an array of 1s, and the discriminator's predictions on fake (generated) images to an array of 0s.

def discriminator_loss(real_output, fake_output): real_loss = cross_entropy(tf.ones_like(real_output), real_output) fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output) total_loss = real_loss + fake_loss return total_loss

Generator loss

The generator's loss quantifies how well it was able to trick the discriminator. Intuitively, if the generator is performing well, the discriminator will classify the fake images as real (or 1). Here, we will compare the discriminators decisions on the generated images to an array of 1s.

def generator_loss(fake_output): return cross_entropy(tf.ones_like(fake_output), fake_output)

The discriminator and the generator optimizers are different since we will train two networks separately.

# generator_optimizer = tf.keras.optimizers.Adam(1e-4) # discriminator_optimizer = tf.keras.optimizers.Adam(1e-4) generator_optimizer = tf.keras.optimizers.RMSprop() discriminator_optimizer = tf.keras.optimizers.RMSprop()

Save checkpoints

This notebook also demonstrates how to save and restore models, which can be helpful in case a long running training task is interrupted.

checkpoint_dir = "./training_checkpoints" checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") checkpoint = tf.train.Checkpoint( generator_optimizer=generator_optimizer, discriminator_optimizer=discriminator_optimizer, generator=generator, discriminator=discriminator, )

Define the training loop

noise_dim = 100 num_examples_to_generate = 25 # 16 # We will reuse this seed overtime (so it's easier) # to visualize progress in the animated GIF) seed = tf.random.normal([num_examples_to_generate, noise_dim])
# http://www.datawrangling.org/python-montage-code-for-displaying-arrays/ from numpy import array, flipud, shape, zeros, rot90, ceil, floor, sqrt from scipy import io, reshape, size import pylab def montage(X, colormap=pylab.cm.gist_gray): m, n, count = shape(X) mm = int(ceil(sqrt(count))) nn = mm M = zeros((mm * m, nn * n)) image_id = 0 for j in range(mm): for k in range(nn): if image_id >= count: break sliceM, sliceN = j * m, k * n M[sliceN : sliceN + n, sliceM : sliceM + m] = X[:, :, image_id] image_id += 1 pylab.imshow(flipud(rot90(M)), cmap=colormap) pylab.axis("off") # We assume tensor is [N, H, W, 1]. def plot_montage(tensor): tensor = tensor[:, :, :, 0] X = np.transpose(tensor, [2, 1, 0]) montage(X)
tensor = train_images[:25, :, :] plot_montage(tensor)
Image in a Jupyter notebook

The training loop begins with generator receiving a random seed as input. That seed is used to produce an image. The discriminator is then used to classify real images (drawn from the training set) and fakes images (produced by the generator). The loss is calculated for each of these models, and the gradients are used to update the generator and discriminator.

def generate_and_save_images(model, epoch, test_input): # Notice `training` is set to False. # This is so all layers run in inference mode (batchnorm). predictions = model(test_input, training=False) predictions = (predictions + 1) / 2 # map back to [0,1] plot_montage(predictions) plt.tight_layout() plt.savefig("image_at_epoch_{:04d}.png".format(epoch)) plt.show()
# Notice the use of `tf.function` # This annotation causes the function to be "compiled". @tf.function def train_step(images): noise = tf.random.normal([BATCH_SIZE, noise_dim]) with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: generated_images = generator(noise, training=True) real_output = discriminator(images, training=True) fake_output = discriminator(generated_images, training=True) gen_loss = generator_loss(fake_output) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
def train(dataset, epochs): for epoch in range(epochs): start = time.time() for image_batch in dataset: train_step(image_batch) # Produce images for the GIF as we go display.clear_output(wait=True) generate_and_save_images(generator, epoch + 1, seed) # Save the model every 15 epochs if (epoch + 1) % 15 == 0: checkpoint.save(file_prefix=checkpoint_prefix) print("Time for epoch {} is {} sec".format(epoch + 1, time.time() - start)) # Generate after the final epoch display.clear_output(wait=True) generate_and_save_images(generator, epochs, seed)

Train the model

Call the train() method defined above to train the generator and discriminator simultaneously. Note, training GANs can be tricky. It's important that the generator and discriminator do not overpower each other (e.g., that they train at a similar rate).

At the beginning of the training, the generated images look like random noise. As training progresses, the generated digits will look increasingly real. After about 50 epochs, they resemble MNIST digits. This may take about one minute / epoch with the default settings on Colab.

%%time EPOCHS = 10 train(train_dataset, EPOCHS)
Image in a Jupyter notebook
CPU times: user 53.2 s, sys: 14 s, total: 1min 7s Wall time: 4min 17s

Restore the latest checkpoint.

checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
<tensorflow.python.training.tracking.util.InitializationOnlyStatus at 0x7f2e02e45ba8>
!ls
image_at_epoch_0001.png image_at_epoch_0005.png image_at_epoch_0009.png image_at_epoch_0002.png image_at_epoch_0006.png image_at_epoch_0010.png image_at_epoch_0003.png image_at_epoch_0007.png sample_data image_at_epoch_0004.png image_at_epoch_0008.png

Create a GIF

# Display a single image using the epoch number def display_image(epoch_no): return PIL.Image.open("image_at_epoch_{:04d}.png".format(epoch_no))
# Remove border from image # https://gist.github.com/kylemcdonald/bedcc053db0e7843ef95c531957cb90f def full_frame(width=None, height=None): import matplotlib as mpl mpl.rcParams["savefig.pad_inches"] = 0 figsize = None if width is None else (width, height) fig = plt.figure(figsize=figsize) ax = plt.axes([0, 0, 1, 1], frameon=False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.autoscale(tight=True)
step = 5 ndx = list(range(1, EPOCHS, step)) ndx.append(EPOCHS) for i in ndx: img = display_image(i) full_frame() plt.imshow(img) plt.axis("off") ttl = "epoch {}".format(i) plt.title(ttl) plt.show()
Image in a Jupyter notebookImage in a Jupyter notebookImage in a Jupyter notebook